Goto

Collaborating Authors

 Gibson, S.


Joint machine learning analysis of muon spectroscopy data from different materials

arXiv.org Machine Learning

Machine learning (ML) methods have proved to be a very successful tool in physical sciences, especially when applied to experimental data analysis. Artificial intelligence is particularly good at recognizing patterns in high dimensional data, where it usually outperforms humans. Here we applied a simple ML tool called principal component analysis (PCA) to study data from muon spectroscopy. The measured quantity from this experiment is an asymmetry function, which holds the information about the average intrinsic magnetic field of the sample. A change in the asymmetry function might indicate a phase transition; however, these changes can be very subtle, and existing methods of analyzing the data require knowledge about the specific physics of the material. PCA is an unsupervised ML tool, which means that no assumption about the input data is required, yet we found that it still can be successfully applied to asymmetry curves, and the indications of phase transitions can be recovered. The method was applied to a range of magnetic materials with different underlying physics. We discovered that performing PCA on all those materials simultaneously can have a positive effect on the clarity of phase transition indicators and can also improve the detection of the most important variations of asymmetry functions. For this joint PCA we introduce a simple way to track the contributions from different materials for a more meaningful analysis.


Machine Learning approach to muon spectroscopy analysis

arXiv.org Machine Learning

In recent years, artificial intelligence techniques have proved to be very successful when applied to problems in physical sciences. Here we apply an unsupervised machine learning (ML) algorithm called principal component analysis (PCA) as a tool to analyse the data from muon spectroscopy experiments. Specifically, we apply the ML technique to detect phase transitions in various materials. The measured quantity in muon spectroscopy is an asymmetry function, which may hold information about the distribution of the intrinsic magnetic field in combination with the dynamics of the sample. Sharp changes of shape of asymmetry functions - measured at different temperatures - might indicate a phase transition. Existing methods of processing the muon spectroscopy data are based on regression analysis, but choosing the right fitting function requires knowledge about the underlying physics of the probed material. Conversely, principal component analysis focuses on small differences in the asymmetry curves and works without any prior assumptions about the studied samples. We discovered that the PCA method works well in detecting phase transitions in muon spectroscopy experiments and can serve as an alternative to current analysis, especially if the physics of the studied material are not entirely known. Additionally, we found out that our ML technique seems to work best with large numbers of measurements, regardless of whether the algorithm takes data only for a single material or whether the analysis is performed simultaneously for many materials with different physical properties.