Ghosn, Joumana
Superintelligent Agents Pose Catastrophic Risks: Can Scientist AI Offer a Safer Path?
Bengio, Yoshua, Cohen, Michael, Fornasiere, Damiano, Ghosn, Joumana, Greiner, Pietro, MacDermott, Matt, Mindermann, Sören, Oberman, Adam, Richardson, Jesse, Richardson, Oliver, Rondeau, Marc-Antoine, St-Charles, Pierre-Luc, Williams-King, David
The leading AI companies are increasingly focused on building generalist AI agents -- systems that can autonomously plan, act, and pursue goals across almost all tasks that humans can perform. Despite how useful these systems might be, unchecked AI agency poses significant risks to public safety and security, ranging from misuse by malicious actors to a potentially irreversible loss of human control. We discuss how these risks arise from current AI training methods. Indeed, various scenarios and experiments have demonstrated the possibility of AI agents engaging in deception or pursuing goals that were not specified by human operators and that conflict with human interests, such as self-preservation. Following the precautionary principle, we see a strong need for safer, yet still useful, alternatives to the current agency-driven trajectory. Accordingly, we propose as a core building block for further advances the development of a non-agentic AI system that is trustworthy and safe by design, which we call Scientist AI. This system is designed to explain the world from observations, as opposed to taking actions in it to imitate or please humans. It comprises a world model that generates theories to explain data and a question-answering inference machine. Both components operate with an explicit notion of uncertainty to mitigate the risks of overconfident predictions. In light of these considerations, a Scientist AI could be used to assist human researchers in accelerating scientific progress, including in AI safety. In particular, our system can be employed as a guardrail against AI agents that might be created despite the risks involved. Ultimately, focusing on non-agentic AI may enable the benefits of AI innovation while avoiding the risks associated with the current trajectory. We hope these arguments will motivate researchers, developers, and policymakers to favor this safer path.
Predicting Infectiousness for Proactive Contact Tracing
Bengio, Yoshua, Gupta, Prateek, Maharaj, Tegan, Rahaman, Nasim, Weiss, Martin, Deleu, Tristan, Muller, Eilif, Qu, Meng, Schmidt, Victor, St-Charles, Pierre-Luc, Alsdurf, Hannah, Bilanuik, Olexa, Buckeridge, David, Caron, Gáetan Marceau, Carrier, Pierre-Luc, Ghosn, Joumana, Ortiz-Gagne, Satya, Pal, Chris, Rish, Irina, Schölkopf, Bernhard, Sharma, Abhinav, Tang, Jian, Williams, Andrew
The COVID-19 pandemic has spread rapidly worldwide, overwhelming manual contact tracing in many countries and resulting in widespread lockdowns for emergency containment. Various DCT methods have been proposed, each making tradeoffs between privacy, mobility restrictions, and public health. The most common approach, binary contact tracing (BCT), models infection as a binary event, informed only by an individual's test results, with corresponding binary recommendations that either all or none of the individual's contacts quarantine. BCT ignores the inherent uncertainty in contacts and the infection process, which could be used to tailor messaging to high-risk individuals, and prompt proactive testing or earlier warnings. It also does not make use of observations such as symptoms or preexisting medical conditions, which could be used to make more accurate infectiousness predictions. In this paper, we use a recently-proposed COVID-19 epidemiological simulator to develop and test methods that can be deployed to a smartphone to locally and proactively predict an individual's infectiousness (risk of infecting others) based on their contact history and other information, while respecting strong privacy constraints. Predictions are used to provide personalized recommendations to the individual via an app, as well as to send anonymized messages to the individual's contacts, who use this information to better predict their own infectiousness, an approach we call proactive contact tracing (PCT). Similarly to other works, we find that compared to no tracing, all DCT methods tested are able to reduce spread of the disease and thus save lives, even at low adoption rates, strongly supporting a role for DCT methods in managing the pandemic. Further, we find a deep-learning based PCT method which improves over BCT for equivalent average mobility, suggesting PCT could help in safe reopening and second-wave prevention. Until pharmaceutical interventions such as a vaccine become available, control of the COVID-19 pandemic relies on nonpharmaceutical interventions such as lockdown and social distancing. While these have often been successful in limiting spread of the disease in the short term, these restrictive measures have important negative social, mental health, and economic impacts. Digital contact tracing (DCT), a technique to track the spread of the virus among individuals in a population using smartphones, is an attractive potential solution to help reduce growth in the number of cases and thereby allow more economic and social activities to resume while keeping the number of cases low. All bolded terms are defined in the Glossary; Appendix 1.
Estimating Car Insurance Premia: a Case Study in High-Dimensional Data Inference
Chapados, Nicolas, Bengio, Yoshua, Vincent, Pascal, Ghosn, Joumana, Dugas, Charles, Takeuchi, Ichiro, Meng, Linyan
This conditional expected claim amount is called the pure premium and it is the basis of the gross premium charged to the insured. This expected value is conditionned on information available about the insured and about the contract, which we call input profile here. This regression problem is difficult for several reasons: large number of examples, -large number variables (most of which are discrete and multi-valued), non-stationarity of the distribution, and a conditional distribution of the dependent variable which is very different from those usually encountered in typical applications.of
Estimating Car Insurance Premia: a Case Study in High-Dimensional Data Inference
Chapados, Nicolas, Bengio, Yoshua, Vincent, Pascal, Ghosn, Joumana, Dugas, Charles, Takeuchi, Ichiro, Meng, Linyan
This conditional expected claim amount is called the pure premium and it is the basis of the gross premium charged to the insured. This expected value is conditionned on information available about the insured and about the contract, which we call input profile here. This regression problem is difficult for several reasons: large number of examples, -large number variables (most of which are discrete and multi-valued), non-stationarity of the distribution, and a conditional distribution of the dependent variable which is very different from those usually encountered in typical applications .of
Multi-Task Learning for Stock Selection
Ghosn, Joumana, Bengio, Yoshua
Artificial Neural Networks can be used to predict future returns of stocks in order to take financial decisions. Should one build a separate network for each stock or share the same network for all the stocks? In this paper we also explore other alternatives, in which some layers are shared and others are not shared. When the prediction of future returns for different stocks are viewed as different tasks, sharing some parameters across stocks is a form of multi-task learning. In a series of experiments with Canadian stocks, we obtain yearly returns that are more than 14% above various benchmarks.
Multi-Task Learning for Stock Selection
Ghosn, Joumana, Bengio, Yoshua
Artificial Neural Networks can be used to predict future returns of stocks in order to take financial decisions. Should one build a separate network for each stock or share the same network for all the stocks? In this paper we also explore other alternatives, in which some layers are shared and others are not shared. When the prediction of future returns for different stocks are viewed as different tasks, sharing some parameters across stocks is a form of multi-task learning. In a series of experiments with Canadian stocks, we obtain yearly returns that are more than 14% above various benchmarks. 1 Introd uction Previous applications of ANNs to financial time-series suggest that several of these prediction and decision-taking tasks present sufficient non-linearities to justify the use of ANNs (Refenes, 1994; Moody, Levin and Rehfuss, 1993).