Goto

Collaborating Authors

 Ghosh, Avishek


Competing Bandits in Decentralized Large Contextual Matching Markets

arXiv.org Machine Learning

Matching markets have become increasingly relevant in a variety of modern applications, including but not limited to school admissions, organ transplantation, and job matching. Traditionally, these markets were studied under the assumption that the demand side agents (aka players or agents) and the supply side agents (aka arms) have fixed, known preferences, allowing for stable matching via the deferred acceptance algorithm like the Gale-Shapley algorithm introduced in Gale and Shapley (1962). However, in applications like crowdsourcing, online labor markets, and finance, the preferences are not given to the agents, and they must learn it over time by interacting with the environment. Modeling the matching market as multi-agent, multi-armed competitive bandits, there has been extensive work on various aspects, including coordinated centralized matching, decentralized matching, and game-theoretic analysis (see Liu et al. (2020); Basu et al. (2021); Sankararaman et al. (2021); Etesami and Srikant (2024)). In this paper, we study a large and dynamic matching market where the number of arms K is large and often exceeds the number of agents N( K).


PairNet: Training with Observed Pairs to Estimate Individual Treatment Effect

arXiv.org Artificial Intelligence

Given a dataset of individuals each described by a covariate vector, a treatment, and an observed outcome on the treatment, the goal of the individual treatment effect (ITE) estimation task is to predict outcome changes resulting from a change in treatment. A fundamental challenge is that in the observational data, a covariate's outcome is observed only under one treatment, whereas we need to infer the difference in outcomes under two different treatments. Several existing approaches address this issue through training with inferred pseudo-outcomes, but their success relies on the quality of these pseudo-outcomes. We propose PairNet, a novel ITE estimation training strategy that minimizes losses over pairs of examples based on their factual observed outcomes. Theoretical analysis for binary treatments reveals that PairNet is a consistent estimator of ITE risk, and achieves smaller generalization error than baseline models. Empirical comparison with thirteen existing methods across eight benchmarks, covering both discrete and continuous treatments, shows that PairNet achieves significantly lower ITE error compared to the baselines. Also, it is model-agnostic and easy to implement.


Agnostic Learning of Mixed Linear Regressions with EM and AM Algorithms

arXiv.org Machine Learning

Mixed linear regression is a well-studied problem in parametric statistics and machine learning. Given a set of samples, tuples of covariates and labels, the task of mixed linear regression is to find a small list of linear relationships that best fit the samples. Usually it is assumed that the label is generated stochastically by randomly selecting one of two or more linear functions, applying this chosen function to the covariates, and potentially introducing noise to the result. In that situation, the objective is to estimate the ground-truth linear functions up to some parameter error. The popular expectation maximization (EM) and alternating minimization (AM) algorithms have been previously analyzed for this. In this paper, we consider the more general problem of agnostic learning of mixed linear regression from samples, without such generative models. In particular, we show that the AM and EM algorithms, under standard conditions of separability and good initialization, lead to agnostic learning in mixed linear regression by converging to the population loss minimizers, for suitably defined loss functions. In some sense, this shows the strength of AM and EM algorithms that converges to ``optimal solutions'' even in the absence of realizable generative models.


Optimal Compression of Unit Norm Vectors in the High Distortion Regime

arXiv.org Artificial Intelligence

Motivated by the need for communication-efficient distributed learning, we investigate the method for compressing a unit norm vector into the minimum number of bits, while still allowing for some acceptable level of distortion in recovery. This problem has been explored in the rate-distortion/covering code literature, but our focus is exclusively on the "high-distortion" regime. We approach this problem in a worst-case scenario, without any prior information on the vector, but allowing for the use of randomized compression maps. Our study considers both biased and unbiased compression methods and determines the optimal compression rates. It turns out that simple compression schemes are nearly optimal in this scenario. While the results are a mix of new and known, they are compiled in this paper for completeness.


Exploration in Linear Bandits with Rich Action Sets and its Implications for Inference

arXiv.org Artificial Intelligence

We present a non-asymptotic lower bound on the eigenspectrum of the design matrix generated by any linear bandit algorithm with sub-linear regret when the action set has well-behaved curvature. Specifically, we show that the minimum eigenvalue of the expected design matrix grows as $\Omega(\sqrt{n})$ whenever the expected cumulative regret of the algorithm is $O(\sqrt{n})$, where $n$ is the learning horizon, and the action-space has a constant Hessian around the optimal arm. This shows that such action-spaces force a polynomial lower bound rather than a logarithmic lower bound, as shown by \cite{lattimore2017end}, in discrete (i.e., well-separated) action spaces. Furthermore, while the previous result is shown to hold only in the asymptotic regime (as $n \to \infty$), our result for these "locally rich" action spaces is any-time. Additionally, under a mild technical assumption, we obtain a similar lower bound on the minimum eigen value holding with high probability. We apply our result to two practical scenarios -- \emph{model selection} and \emph{clustering} in linear bandits. For model selection, we show that an epoch-based linear bandit algorithm adapts to the true model complexity at a rate exponential in the number of epochs, by virtue of our novel spectral bound. For clustering, we consider a multi agent framework where we show, by leveraging the spectral result, that no forced exploration is necessary -- the agents can run a linear bandit algorithm and estimate their underlying parameters at once, and hence incur a low regret.


Model Selection in Reinforcement Learning with General Function Approximations

arXiv.org Machine Learning

We consider model selection for classic Reinforcement Learning (RL) environments -- Multi Armed Bandits (MABs) and Markov Decision Processes (MDPs) -- under general function approximations. In the model selection framework, we do not know the function classes, denoted by $\mathcal{F}$ and $\mathcal{M}$, where the true models -- reward generating function for MABs and and transition kernel for MDPs -- lie, respectively. Instead, we are given $M$ nested function (hypothesis) classes such that true models are contained in at-least one such class. In this paper, we propose and analyze efficient model selection algorithms for MABs and MDPs, that \emph{adapt} to the smallest function class (among the nested $M$ classes) containing the true underlying model. Under a separability assumption on the nested hypothesis classes, we show that the cumulative regret of our adaptive algorithms match to that of an oracle which knows the correct function classes (i.e., $\cF$ and $\cM$) a priori. Furthermore, for both the settings, we show that the cost of model selection is an additive term in the regret having weak (logarithmic) dependence on the learning horizon $T$.


Model Selection with Near Optimal Rates for Reinforcement Learning with General Model Classes

arXiv.org Machine Learning

We address the problem of model selection for the finite horizon episodic Reinforcement Learning (RL) problem where the transition kernel $P^*$ belongs to a family of models $\mathcal{P}^*$ with finite metric entropy. In the model selection framework, instead of $\mathcal{P}^*$, we are given $M$ nested families of transition kernels $\cP_1 \subset \cP_2 \subset \ldots \subset \cP_M$. We propose and analyze a novel algorithm, namely \emph{Adaptive Reinforcement Learning (General)} (\texttt{ARL-GEN}) that adapts to the smallest such family where the true transition kernel $P^*$ lies. \texttt{ARL-GEN} uses the Upper Confidence Reinforcement Learning (\texttt{UCRL}) algorithm with value targeted regression as a blackbox and puts a model selection module at the beginning of each epoch. Under a mild separability assumption on the model classes, we show that \texttt{ARL-GEN} obtains a regret of $\Tilde{\mathcal{O}}(d_{\mathcal{E}}^*H^2+\sqrt{d_{\mathcal{E}}^* \mathbb{M}^* H^2 T})$, with high probability, where $H$ is the horizon length, $T$ is the total number of steps, $d_{\mathcal{E}}^*$ is the Eluder dimension and $\mathbb{M}^*$ is the metric entropy corresponding to $\mathcal{P}^*$. Note that this regret scaling matches that of an oracle that knows $\mathcal{P}^*$ in advance. We show that the cost of model selection for \texttt{ARL-GEN} is an additive term in the regret having a weak dependence on $T$. Subsequently, we remove the separability assumption and consider the setup of linear mixture MDPs, where the transition kernel $P^*$ has a linear function approximation. With this low rank structure, we propose novel adaptive algorithms for model selection, and obtain (order-wise) regret identical to that of an oracle with knowledge of the true model class.


Model Selection for Generic Contextual Bandits

arXiv.org Machine Learning

We consider the problem of model selection for the general stochastic contextual bandits under the realizability assumption. We propose a successive refinement based algorithm called Adaptive Contextual Bandit ({\ttfamily ACB}), that works in phases and successively eliminates model classes that are too simple to fit the given instance. We prove that this algorithm is adaptive, i.e., the regret rate order-wise matches that of {\ttfamily FALCON}, the state-of-art contextual bandit algorithm of Levi et. al '20, that needs knowledge of the true model class. The price of not knowing the correct model class is only an additive term contributing to the second order term in the regret bound. This cost possess the intuitive property that it becomes smaller as the model class becomes easier to identify, and vice-versa. We then show that a much simpler explore-then-commit (ETC) style algorithm also obtains a regret rate of matching that of {\ttfamily FALCON}, despite not knowing the true model class. However, the cost of model selection is higher in ETC as opposed to in {\ttfamily ACB}, as expected. Furthermore, {\ttfamily ACB} applied to the linear bandit setting with unknown sparsity, order-wise recovers the model selection guarantees previously established by algorithms tailored to the linear setting.


Collaborative Learning and Personalization in Multi-Agent Stochastic Linear Bandits

arXiv.org Machine Learning

We consider the problem of minimizing regret in an $N$ agent heterogeneous stochastic linear bandits framework, where the agents (users) are similar but not all identical. We model user heterogeneity using two popularly used ideas in practice; (i) A clustering framework where users are partitioned into groups with users in the same group being identical to each other, but different across groups, and (ii) a personalization framework where no two users are necessarily identical, but a user's parameters are close to that of the population average. In the clustered users' setup, we propose a novel algorithm, based on successive refinement of cluster identities and regret minimization. We show that, for any agent, the regret scales as $\mathcal{O}(\sqrt{T/N})$, if the agent is in a `well separated' cluster, or scales as $\mathcal{O}(T^{\frac{1}{2} + \varepsilon}/(N)^{\frac{1}{2} -\varepsilon})$ if its cluster is not well separated, where $\varepsilon$ is positive and arbitrarily close to $0$. Our algorithm is adaptive to the cluster separation, and is parameter free -- it does not need to know the number of clusters, separation and cluster size, yet the regret guarantee adapts to the inherent complexity. In the personalization framework, we introduce a natural algorithm where, the personal bandit instances are initialized with the estimates of the global average model. We show that, an agent $i$ whose parameter deviates from the population average by $\epsilon_i$, attains a regret scaling of $\widetilde{O}(\epsilon_i\sqrt{T})$. This demonstrates that if the user representations are close (small $\epsilon_i)$, the resulting regret is low, and vice-versa. The results are empirically validated and we observe superior performance of our adaptive algorithms over non-adaptive baselines.


LocalNewton: Reducing Communication Bottleneck for Distributed Learning

arXiv.org Machine Learning

To address the communication bottleneck problem in distributed optimization within a master-worker framework, we propose LocalNewton, a distributed second-order algorithm with local averaging. In LocalNewton, the worker machines update their model in every iteration by finding a suitable second-order descent direction using only the data and model stored in their own local memory. We let the workers run multiple such iterations locally and communicate the models to the master node only once every few (say L) iterations. LocalNewton is highly practical since it requires only one hyperparameter, the number L of local iterations. We use novel matrix concentration-based techniques to obtain theoretical guarantees for LocalNewton, and we validate them with detailed empirical evaluation. To enhance practicability, we devise an adaptive scheme to choose L, and we show that this reduces the number of local iterations in worker machines between two model synchronizations as the training proceeds, successively refining the model quality at the master. Via extensive experiments using several real-world datasets with AWS Lambda workers and an AWS EC2 master, we show that LocalNewton requires fewer than 60% of the communication rounds (between master and workers) and less than 40% of the end-to-end running time, compared to state-of-the-art algorithms, to reach the same training~loss.