Goto

Collaborating Authors

 Ghannay, Sahar


A dual task learning approach to fine-tune a multilingual semantic speech encoder for Spoken Language Understanding

arXiv.org Artificial Intelligence

Self-Supervised Learning is vastly used to efficiently represent speech for Spoken Language Understanding, gradually replacing conventional approaches. Meanwhile, textual SSL models are proposed to encode language-agnostic semantics. SAMU-XLSR framework employed this semantic information to enrich multilingual speech representations. A recent study investigated SAMU-XLSR in-domain semantic enrichment by specializing it on downstream transcriptions, leading to state-of-the-art results on a challenging SLU task. This study's interest lies in the loss of multilingual performances and lack of specific-semantics training induced by such specialization in close languages without any SLU implication. We also consider SAMU-XLSR's loss of initial cross-lingual abilities due to a separate SLU fine-tuning. Therefore, this paper proposes a dual task learning approach to improve SAMU-XLSR semantic enrichment while considering distant languages for multilingual and language portability experiments.


Small Language Models are Good Too: An Empirical Study of Zero-Shot Classification

arXiv.org Artificial Intelligence

This study is part of the debate on the efficiency of large versus small language models for text classification by prompting.We assess the performance of small language models in zero-shot text classification, challenging the prevailing dominance of large models.Across 15 datasets, our investigation benchmarks language models from 77M to 40B parameters using different architectures and scoring functions. Our findings reveal that small models can effectively classify texts, getting on par with or surpassing their larger counterparts.We developed and shared a comprehensive open-source repository that encapsulates our methodologies. This research underscores the notion that bigger isn't always better, suggesting that resource-efficient small models may offer viable solutions for specific data classification challenges.


New Semantic Task for the French Spoken Language Understanding MEDIA Benchmark

arXiv.org Artificial Intelligence

Intent classification and slot-filling are essential tasks of Spoken Language Understanding (SLU). In most SLUsystems, those tasks are realized by independent modules. For about fifteen years, models achieving both of themjointly and exploiting their mutual enhancement have been proposed. A multilingual module using a joint modelwas envisioned to create a touristic dialogue system for a European project, HumanE-AI-Net. A combination ofmultiple datasets, including the MEDIA dataset, was suggested for training this joint model. The MEDIA SLU datasetis a French dataset distributed since 2005 by ELRA, mainly used by the French research community and free foracademic research since 2020. Unfortunately, it is annotated only in slots but not intents. An enhanced version ofMEDIA annotated with intents has been built to extend its use to more tasks and use cases. This paper presents thesemi-automatic methodology used to obtain this enhanced version. In addition, we present the first results of SLUexperiments on this enhanced dataset using joint models for intent classification and slot-filling.


Semantic enrichment towards efficient speech representations

arXiv.org Artificial Intelligence

Over the past few years, self-supervised learned speech representations have emerged as fruitful replacements for conventional surface representations when solving Spoken Language Understanding (SLU) tasks. Simultaneously, multilingual models trained on massive textual data were introduced to encode language agnostic semantics. Recently, the SAMU-XLSR approach introduced a way to make profit from such textual models to enrich multilingual speech representations with language agnostic semantics. By aiming for better semantic extraction on a challenging Spoken Language Understanding task and in consideration with computation costs, this study investigates a specific in-domain semantic enrichment of the SAMU-XLSR model by specializing it on a small amount of transcribed data from the downstream task. In addition, we show the benefits of the use of same-domain French and Italian benchmarks for low-resource language portability and explore cross-domain capacities of the enriched SAMU-XLSR.


Benchmarking Transformers-based models on French Spoken Language Understanding tasks

arXiv.org Artificial Intelligence

In the last five years, the rise of the self-attentional Transformer-based architectures led to state-of-the-art performances over many natural language tasks. Although these approaches are increasingly popular, they require large amounts of data and computational resources. There is still a substantial need for benchmarking methodologies ever upwards on under-resourced languages in data-scarce application conditions. Most pre-trained language models were massively studied using the English language and only a few of them were evaluated on French. In this paper, we propose a unified benchmark, focused on evaluating models quality and their ecological impact on two well-known French spoken language understanding tasks. Especially we benchmark thirteen well-established Transformer-based models on the two available spoken language understanding tasks for French: MEDIA and ATIS-FR. Within this framework, we show that compact models can reach comparable results to bigger ones while their ecological impact is considerably lower. However, this assumption is nuanced and depends on the considered compression method.


LIMSI_UPV at SemEval-2020 Task 9: Recurrent Convolutional Neural Network for Code-mixed Sentiment Analysis

arXiv.org Artificial Intelligence

This paper describes the participation of LIMSI UPV team in SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text. The proposed approach competed in SentiMix Hindi-English subtask, that addresses the problem of predicting the sentiment of a given Hindi-English code-mixed tweet. We propose Recurrent Convolutional Neural Network that combines both the recurrent neural network and the convolutional network to better capture the semantics of the text, for code-mixed sentiment analysis. The proposed system obtained 0.69 (best run) in terms of F1 score on the given test data and achieved the 9th place (Codalab username: somban) in the SentiMix Hindi-English subtask.