Ghalwash, Mohamed
Informing clinical assessment by contextualizing post-hoc explanations of risk prediction models in type-2 diabetes
Chari, Shruthi, Acharya, Prasant, Gruen, Daniel M., Zhang, Olivia, Eyigoz, Elif K., Ghalwash, Mohamed, Seneviratne, Oshani, Saiz, Fernando Suarez, Meyer, Pablo, Chakraborty, Prithwish, McGuinness, Deborah L.
Medical experts may use Artificial Intelligence (AI) systems with greater trust if these are supported by contextual explanations that let the practitioner connect system inferences to their context of use. However, their importance in improving model usage and understanding has not been extensively studied. Hence, we consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state, AI predictions about their risk of complications, and algorithmic explanations supporting the predictions. We explore how relevant information for such dimensions can be extracted from Medical guidelines to answer typical questions from clinical practitioners. We identify this as a question answering (QA) task and employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability. Finally, we study the benefits of contextual explanations by building an end-to-end AI pipeline including data cohorting, AI risk modeling, post-hoc model explanations, and prototyped a visual dashboard to present the combined insights from different context dimensions and data sources, while predicting and identifying the drivers of risk of Chronic Kidney Disease - a common type-2 diabetes comorbidity. All of these steps were performed in engagement with medical experts, including a final evaluation of the dashboard results by an expert medical panel. We show that LLMs, in particular BERT and SciBERT, can be readily deployed to extract some relevant explanations to support clinical usage. To understand the value-add of the contextual explanations, the expert panel evaluated these regarding actionable insights in the relevant clinical setting. Overall, our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
Leveraging Clinical Context for User-Centered Explainability: A Diabetes Use Case
Chari, Shruthi, Chakraborty, Prithwish, Ghalwash, Mohamed, Seneviratne, Oshani, Eyigoz, Elif K., Gruen, Daniel M., Saiz, Fernando Suarez, Chen, Ching-Hua, Rojas, Pablo Meyer, McGuinness, Deborah L.
Academic advances of AI models in high-precision domains, like healthcare, need to be made explainable in order to enhance real-world adoption. Our past studies and ongoing interactions indicate that medical experts can use AI systems with greater trust if there are ways to connect the model inferences about patients to explanations that are tied back to the context of use. Specifically, risk prediction is a complex problem of diagnostic and interventional importance to clinicians wherein they consult different sources to make decisions. To enable the adoption of the ever improving AI risk prediction models in practice, we have begun to explore techniques to contextualize such models along three dimensions of interest: the patients' clinical state, AI predictions about their risk of complications, and algorithmic explanations supporting the predictions. We validate the importance of these dimensions by implementing a proof-of-concept (POC) in type-2 diabetes (T2DM) use case where we assess the risk of chronic kidney disease (CKD) - a common T2DM comorbidity. Within the POC, we include risk prediction models for CKD, post-hoc explainers of the predictions, and other natural-language modules which operationalize domain knowledge and CPGs to provide context. With primary care physicians (PCP) as our end-users, we present our initial results and clinician feedback in this paper. Our POC approach covers multiple knowledge sources and clinical scenarios, blends knowledge to explain data and predictions to PCPs, and received an enthusiastic response from our medical expert.
Phenotypical Ontology Driven Framework for Multi-Task Learning
Ghalwash, Mohamed, Yao, Zijun, Chakraborty, Prithwish, Codella, James, Sow, Daby
Despite the large number of patients in Electronic Health Records (EHRs), the subset of usable data for modeling outcomes of specific phenotypes are often imbalanced and of modest size. This can be attributed to the uneven coverage of medical concepts in EHRs. In this paper, we propose OMTL, an Ontology-driven Multi-Task Learning framework, that is designed to overcome such data limitations. The key contribution of our work is the effective use of knowledge from a predefined well-established medical relationship graph (ontology) to construct a novel deep learning network architecture that mirrors this ontology. It can effectively leverage knowledge from a well-established medical relationship graph (ontology) by constructing a deep learning network architecture that mirrors this graph. This enables common representations to be shared across related phenotypes, and was found to improve the learning performance. The proposed OMTL naturally allows for multitask learning of different phenotypes on distinct predictive tasks. These phenotypes are tied together by their semantic distance according to the external medical ontology. Using the publicly available MIMIC-III database, we evaluate OMTL and demonstrate its efficacy on several real patient outcome predictions over state-of-the-art multi-task learning schemes.
ODVICE: An Ontology-Driven Visual Analytic Tool for Interactive Cohort Extraction
Ghalwash, Mohamed, Yao, Zijun, Chakrabotry, Prithwish, Codella, James, Sow, Daby
Increased availability of electronic health records (EHR) has enabled researchers to study various medical questions. Cohort selection for the hypothesis under investigation is one of the main consideration for EHR analysis. For uncommon diseases, cohorts extracted from EHRs contain very limited number of records - hampering the robustness of any analysis. Data augmentation methods have been successfully applied in other domains to address this issue mainly using simulated records. In this paper, we present ODVICE, a data augmentation framework that leverages the medical concept ontology to systematically augment records using a novel ontologically guided Monte-Carlo graph spanning algorithm. The tool allows end users to specify a small set of interactive controls to control the augmentation process. We analyze the importance of ODVICE by conducting studies on MIMIC-III dataset for two learning tasks. Our results demonstrate the predictive performance of ODVICE augmented cohorts, showing ~30% improvement in area under the curve (AUC) over the non-augmented dataset and other data augmentation strategies.
Continuous Conditional Dependency Network for Structured Regression
Han, Chao (Temple University) | Ghalwash, Mohamed (IBM T.J. Watson and Temple University) | Obradovic, Zoran (Temple University)
Structured regression on graphs aims to predict response variables from multiple nodes by discovering and exploiting the dependency structure among response variables. This problem is challenging since dependencies among response variables are always unknown, and the associated prior knowledge is non-symmetric. In previous studies, various promising solutions were proposed to improve structured regression by utilizing symmetric prior knowledge, learning sparse dependency structure among response variables, or learning representations of attributes of multiple nodes. However, none of them are capable of efficiently learning dependency structure while incorporating non-symmetric prior knowledge. To achieve these objectives, we proposed Continuous Conditional Dependency Network (CCDN) for structured regression. The intuitive idea behind this model is that each response variable is not only dependent on attributes from the same node, but also on response variables from all other nodes. This results in a joint modeling of local conditional probabilities. The parameter learning is formulated as a convex optimization problem and an effective sampling algorithm is proposed for inference. CCDN is flexible in absorbing non-symmetric prior knowledge. The performance of CCDN on multiple datasets provides evidence of its structure recovery ability and superior effectiveness and efficiency as compared to the state-of-the-art alternatives.
Extending the Modelling Capacity of Gaussian Conditional Random Fields while Learning Faster
Glass, Jesse (Temple University) | Ghalwash, Mohamed (Temple University) | Vukicevic, Milan (University of Belgrade) | Obradovic, Zoran (Temple University)
Gaussian Conditional Random Fields (GCRF) are atype of structured regression model that incorporatesmultiple predictors and multiple graphs. This isachieved by defining quadratic term feature functions inGaussian canonical form which makes the conditionallog-likelihood function convex and hence allows findingthe optimal parameters by learning from data. In thiswork, the parameter space for the GCRF model is extendedto facilitate joint modelling of positive and negativeinfluences. This is achieved by restricting the modelto a single graph and formulating linear bounds on convexitywith respect to the models parameters. In addition,our formulation for the model using one networkallows calculating gradients much faster than alternativeimplementations. Lastly, we extend the model onestep farther and incorporate a bias term into our linkweight. This bias is solved as part of the convex optimization.Benefits of the proposed model in terms ofimproved accuracy and speed are characterized on severalsynthetic graphs with 2 million links as well as on ahospital admissions prediction task represented as a humandisease-symptom similarity network correspondingto more than 35 million hospitalization records inCalifornia over 9 years.