Not enough data to create a plot.
Try a different view from the menu above.
Geuchen, Paul
On best approximation by multivariate ridge functions with applications to generalized translation networks
Geuchen, Paul, Salanevich, Palina, Schavemaker, Olov, Voigtlaender, Felix
We prove sharp upper and lower bounds for the approximation of Sobolev functions by sums of multivariate ridge functions, i.e., functions of the form $\mathbb{R}^d \ni x \mapsto \sum_{k=1}^n h_k(A_k x) \in \mathbb{R}$ with $h_k : \mathbb{R}^\ell \to \mathbb{R}$ and $A_k \in \mathbb{R}^{\ell \times d}$. We show that the order of approximation asymptotically behaves as $n^{-r/(d-\ell)}$, where $r$ is the regularity of the Sobolev functions to be approximated. Our lower bound even holds when approximating $L^\infty$-Sobolev functions of regularity $r$ with error measured in $L^1$, while our upper bound applies to the approximation of $L^p$-Sobolev functions in $L^p$ for any $1 \leq p \leq \infty$. These bounds generalize well-known results about the approximation properties of univariate ridge functions to the multivariate case. Moreover, we use these bounds to obtain sharp asymptotic bounds for the approximation of Sobolev functions using generalized translation networks and complex-valued neural networks.
Upper and lower bounds for the Lipschitz constant of random neural networks
Geuchen, Paul, Heindl, Thomas, Stรถger, Dominik, Voigtlaender, Felix
Empirical studies have widely demonstrated that neural networks are highly sensitive to small, adversarial perturbations of the input. The worst-case robustness against these so-called adversarial examples can be quantified by the Lipschitz constant of the neural network. In this paper, we study upper and lower bounds for the Lipschitz constant of random ReLU neural networks. Specifically, we assume that the weights and biases follow a generalization of the He initialization, where general symmetric distributions for the biases are permitted. For shallow neural networks, we characterize the Lipschitz constant up to an absolute numerical constant. For deep networks with fixed depth and sufficiently large width, our established bounds differ by a factor that is logarithmic in the width.
Optimal approximation using complex-valued neural networks
Geuchen, Paul, Voigtlaender, Felix
Complex-valued neural networks (CVNNs) have recently shown promising empirical success, for instance for increasing the stability of recurrent neural networks and for improving the performance in tasks with complex-valued inputs, such as in MRI fingerprinting. While the overwhelming success of Deep Learning in the real-valued case is supported by a growing mathematical foundation, such a foundation is still largely lacking in the complex-valued case. We thus analyze the expressivity of CVNNs by studying their approximation properties. Our results yield the first quantitative approximation bounds for CVNNs that apply to a wide class of activation functions including the popular modReLU and complex cardioid activation functions. Precisely, our results apply to any activation function that is smooth but not polyharmonic on some non-empty open set; this is the natural generalization of the class of smooth and non-polynomial activation functions to the complex setting. Our main result shows that the error for the approximation of $C^k$-functions scales as $m^{-k/(2n)}$ for $m \to \infty$ where $m$ is the number of neurons, $k$ the smoothness of the target function and $n$ is the (complex) input dimension. Under a natural continuity assumption, we show that this rate is optimal; we further discuss the optimality when dropping this assumption. Moreover, we prove that the problem of approximating $C^k$-functions using continuous approximation methods unavoidably suffers from the curse of dimensionality.
Universal approximation with complex-valued deep narrow neural networks
Geuchen, Paul, Jahn, Thomas, Matt, Hannes
We study the universality of complex-valued neural networks with bounded widths and arbitrary depths. Under mild assumptions, we give a full description of those activation functions $\varrho:\mathbb{C}\to \mathbb{C}$ that have the property that their associated networks are universal, i.e., are capable of approximating continuous functions to arbitrary accuracy on compact domains. Precisely, we show that deep narrow complex-valued networks are universal if and only if their activation function is neither holomorphic, nor antiholomorphic, nor $\mathbb{R}$-affine. This is a much larger class of functions than in the dual setting of arbitrary width and fixed depth. Unlike in the real case, the sufficient width differs significantly depending on the considered activation function. We show that a width of $2n+2m+5$ is always sufficient and that in general a width of $\max\{2n,2m\}$ is necessary. We prove, however, that a width of $n+m+4$ suffices for a rich subclass of the admissible activation functions. Here, $n$ and $m$ denote the input and output dimensions of the considered networks.