Gerrish, Sean
Black Box Variational Inference
Ranganath, Rajesh, Gerrish, Sean, Blei, David M.
Variational inference has become a widely used method to approximate posteriors in complex latent variables models. However, deriving a variational inference algorithm generally requires significant model-specific analysis, and these efforts can hinder and deter us from quickly developing and exploring a variety of models for a problem at hand. In this paper, we present a "black box" variational inference algorithm, one that can be quickly applied to many models with little additional derivation. Our method is based on a stochastic optimization of the variational objective where the noisy gradient is computed from Monte Carlo samples from the variational distribution. We develop a number of methods to reduce the variance of the gradient, always maintaining the criterion that we want to avoid difficult model-based derivations. We evaluate our method against the corresponding black box sampling based methods. We find that our method reaches better predictive likelihoods much faster than sampling methods. Finally, we demonstrate that Black Box Variational Inference lets us easily explore a wide space of models by quickly constructing and evaluating several models of longitudinal healthcare data.
Scalable Inference of Overlapping Communities
Gopalan, Prem K., Gerrish, Sean, Freedman, Michael, Blei, David M., Mimno, David M.
We develop a scalable algorithm for posterior inference of overlapping communities in large networks. Our algorithm is based on stochastic variational inference in the mixed-membership stochastic blockmodel. It naturally interleaves subsampling the network with estimating its community structure. We apply our algorithm on ten large, real-world networks with up to 60,000 nodes. It converges several orders of magnitude faster than the state-of-the-art algorithm for MMSB, finds hundreds of communities in large real-world networks, and detects the true communities in 280 benchmark networks with equal or better accuracy compared to other scalable algorithms.
How They Vote: Issue-Adjusted Models of Legislative Behavior
Gerrish, Sean, Blei, David M.
We develop a probabilistic model of legislative data that uses the text of the bills to uncover lawmakers' positions on specific political issues. Our model can be used to explore how a lawmaker's voting patterns deviate from what is expected and how that deviation depends on what is being voted on. We derive approximate posterior inference algorithms based on variational methods. Across 12 years of legislative data, we demonstrate both improvement in heldout predictive performance and the model's utility in interpreting an inherently multi-dimensional space.
Reading Tea Leaves: How Humans Interpret Topic Models
Chang, Jonathan, Gerrish, Sean, Wang, Chong, Boyd-graber, Jordan L., Blei, David M.
Probabilistic topic models are a popular tool for the unsupervised analysis of text, providing both a predictive model of future text and a latent topic representation of the corpus. Practitioners typically assume that the latent space is semantically meaningful. It is used to check models, summarize the corpus, and guide exploration ofits contents. However, whether the latent space is interpretable is in need of quantitative evaluation. In this paper, we present new quantitative methods for measuring semantic meaning in inferred topics. We back these measures with large-scale user studies, showing that they capture aspects of the model that are undetected by previous measures of model quality based on held-out likelihood. Surprisingly, topic models which perform better on held-out likelihood may infer less semantically meaningful topics.