Goto

Collaborating Authors

 Gerevini, A.


An Approach to Temporal Planning and Scheduling in Domains with Predictable Exogenous Events

arXiv.org Artificial Intelligence

The treatment of exogenous events in planning is practically important in many real-world domains where the preconditions of certain plan actions are affected by such events. In this paper we focus on planning in temporal domains with exogenous events that happen at known times, imposing the constraint that certain actions in the plan must be executed during some predefined time windows. When actions have durations, handling such temporal constraints adds an extra difficulty to planning. We propose an approach to planning in these domains which integrates constraint-based temporal reasoning into a graph-based planning framework using local search. Our techniques are implemented in a planner that took part in the 4th International Planning Competition (IPC-4). A statistical analysis of the results of IPC-4 demonstrates the effectiveness of our approach in terms of both CPU-time and plan quality. Additional experiments show the good performance of the temporal reasoning techniques integrated into our planner.


Planning Through Stochastic Local Search and Temporal Action Graphs in LPG

arXiv.org Artificial Intelligence

We present some techniques for planning in domains specified with the recent standard language PDDL2.1, supporting 'durative actions' and numerical quantities. These techniques are implemented in LPG, a domain-independent planner that took part in the 3rd International Planning Competition (IPC). LPG is an incremental, any time system producing multi-criteria quality plans. The core of the system is based on a stochastic local search method and on a graph-based representation called 'Temporal Action Graphs' (TA-graphs). This paper focuses on temporal planning, introducing TA-graphs and proposing some techniques to guide the search in LPG using this representation. The experimental results of the 3rd IPC, as well as further results presented in this paper, show that our techniques can be very effective. Often LPG outperforms all other fully-automated planners of the 3rd IPC in terms of speed to derive a solution, or quality of the solutions that can be produced.


An Approach to Temporal Planning and Scheduling in Domains with Predictable Exogenous Events

Journal of Artificial Intelligence Research

The treatment of exogenous events in planning is practically important in many real-world domains where the preconditions of certain plan actions are affected by such events. In this paper we focus on planning in temporal domains with exogenous events that happen at known times, imposing the constraint that certain actions in the plan must be executed during some predefined time windows. When actions have durations, handling such temporal constraints adds an extra difficulty to planning. We propose an approach to planning in these domains which integrates constraint-based temporal reasoning into a graph-based planning framework using local search. Our techniques are implemented in a planner that took part in the 4th International Planning Competition (IPC-4). A statistical analysis of the results of IPC-4 demonstrates the effectiveness of our approach in terms of both CPU-time and plan quality. Additional experiments show the good performance of the temporal reasoning techniques integrated into our planner.


Planning Through Stochastic Local Search and Temporal Action Graphs in LPG

Journal of Artificial Intelligence Research

We present some techniques for planning in domains specified with the recent standard language PDDL2.1, supporting 'durative actions' and numerical quantities. These techniques are implemented in LPG, a domain-independent planner that took part in the 3rd International Planning Competition (IPC). LPG is an incremental, any time system producing multi-criteria quality plans. The core of the system is based on a stochastic local search method and on a graph-based representation called 'Temporal Action Graphs' (TA-graphs). This paper focuses on temporal planning, introducing TA-graphs and proposing some techniques to guide the search in LPG using this representation. The experimental results of the 3rd IPC, as well as further results presented in this paper, show that our techniques can be very effective. Often LPG outperforms all other fully-automated planners of the 3rd IPC in terms of speed to derive a solution, or quality of the solutions that can be produced.


Accelerating Partial-Order Planners: Some Techniques for Effective Search Control and Pruning

Journal of Artificial Intelligence Research

We propose some domain-independent techniques for bringing well-founded partial-order planners closer to practicality. The first two techniques are aimed at improving search control while keeping overhead costs low. One is based on a simple adjustment to the default A* heuristic used by UCPOP to select plans for refinement. The other is based on preferring ``zero commitment'' (forced) plan refinements whenever possible, and using LIFO prioritization otherwise. A more radical technique is the use of operator parameter domains to prune search. These domains are initially computed from the definitions of the operators and the initial and goal conditions, using a polynomial-time algorithm that propagates sets of constants through the operator graph, starting in the initial conditions. During planning, parameter domains can be used to prune nonviable operator instances and to remove spurious clobbering threats. In experiments based on modifications of UCPOP, our improved plan and goal selection strategies gave speedups by factors ranging from 5 to more than 1000 for a variety of problems that are nontrivial for the unmodified version. Crucially, the hardest problems gave the greatest improvements. The pruning technique based on parameter domains often gave speedups by an order of magnitude or more for difficult problems, both with the default UCPOP search strategy and with our improved strategy. The Lisp code for our techniques and for the test problems is provided in on-line appendices.