Goto

Collaborating Authors

 Gerace, Federica


A distributional simplicity bias in the learning dynamics of transformers

arXiv.org Artificial Intelligence

The remarkable capability of over-parameterised neural networks to generalise effectively has been explained by invoking a ``simplicity bias'': neural networks prevent overfitting by initially learning simple classifiers before progressing to more complex, non-linear functions. While simplicity biases have been described theoretically and experimentally in feed-forward networks for supervised learning, the extent to which they also explain the remarkable success of transformers trained with self-supervised techniques remains unclear. In our study, we demonstrate that transformers, trained on natural language data, also display a simplicity bias. Specifically, they sequentially learn many-body interactions among input tokens, reaching a saturation point in the prediction error for low-degree interactions while continuing to learn high-degree interactions. To conduct this analysis, we develop a procedure to generate \textit{clones} of a given natural language data set, which rigorously capture the interactions between tokens up to a specified order. This approach opens up the possibilities of studying how interactions of different orders in the data affect learning, in natural language processing and beyond.


Learning from higher-order statistics, efficiently: hypothesis tests, random features, and neural networks

arXiv.org Machine Learning

Neural networks excel at discovering statistical patterns in high-dimensional data sets. In practice, higher-order cumulants, which quantify the non-Gaussian correlations between three or more variables, are particularly important for the performance of neural networks. But how efficient are neural networks at extracting features from higher-order cumulants? We study this question in the spiked cumulant model, where the statistician needs to recover a privileged direction or "spike" from the order-$p\ge 4$ cumulants of~$d$-dimensional inputs. We first characterise the fundamental statistical and computational limits of recovering the spike by analysing the number of samples~$n$ required to strongly distinguish between inputs from the spiked cumulant model and isotropic Gaussian inputs. We find that statistical distinguishability requires $n\gtrsim d$ samples, while distinguishing the two distributions in polynomial time requires $n \gtrsim d^2$ samples for a wide class of algorithms, i.e. those covered by the low-degree conjecture. These results suggest the existence of a wide statistical-to-computational gap in this problem. Numerical experiments show that neural networks learn to distinguish the two distributions with quadratic sample complexity, while "lazy" methods like random features are not better than random guessing in this regime. Our results show that neural networks extract information from higher-order correlations in the spiked cumulant model efficiently, and reveal a large gap in the amount of data required by neural networks and random features to learn from higher-order cumulants.


What does self-attention learn from Masked Language Modelling?

arXiv.org Machine Learning

Transformers are neural networks which revolutionised natural language processing and machine learning. They process sequences of inputs, like words, using a mechanism called self-attention, which is trained via masked language modelling (MLM). In MLM, a word is randomly masked in an input sequence, and the network is trained to predict the missing word. Despite the practical success of transformers, it remains unclear what type of data distribution self-attention can learn efficiently. Here, we show analytically that if one decouples the treatment of word positions and embeddings, a single layer of self-attention learns the conditionals of a generalised Potts model with interactions between sites and Potts colours. Moreover, we show that training this neural network is exactly equivalent to solving the inverse Potts problem by the so-called pseudo-likelihood method, well known in statistical physics. Using this mapping, we compute the generalisation error of self-attention in a model scenario analytically using the replica method.


Bias-inducing geometries: an exactly solvable data model with fairness implications

arXiv.org Machine Learning

Machine learning (ML) may be oblivious to human bias but it is not immune to its perpetuation. Marginalisation and iniquitous group representation are often traceable in the very data used for training, and may be reflected or even enhanced by the learning models. In the present work, we aim at clarifying the role played by data geometry in the emergence of ML bias. We introduce an exactly solvable high-dimensional model of data imbalance, where parametric control over the many bias-inducing factors allows for an extensive exploration of the bias inheritance mechanism. Through the tools of statistical physics, we analytically characterise the typical properties of learning models trained in this synthetic framework and obtain exact predictions for the observables that are commonly employed for fairness assessment. Despite the simplicity of the data model, we retrace and unpack typical unfairness behaviour observed on real-world datasets. We also obtain a detailed analytical characterisation of a class of bias mitigation strategies. We first consider a basic loss-reweighing scheme, which allows for an implicit minimisation of different unfairness metrics, and quantify the incompatibilities between some existing fairness criteria. Then, we consider a novel mitigation strategy based on a matched inference approach, consisting in the introduction of coupled learning models. Our theoretical analysis of this approach shows that the coupled strategy can strike superior fairness-accuracy trade-offs.


Gaussian Universality of Perceptrons with Random Labels

arXiv.org Artificial Intelligence

While classical in many theoretical settings - and in particular in statistical physics-inspired works - the assumption of Gaussian i.i.d. input data is often perceived as a strong limitation in the context of statistics and machine learning. In this study, we redeem this line of work in the case of generalized linear classification, a.k.a. the perceptron model, with random labels. We argue that there is a large universality class of high-dimensional input data for which we obtain the same minimum training loss as for Gaussian data with corresponding data covariance. In the limit of vanishing regularization, we further demonstrate that the training loss is independent of the data covariance. On the theoretical side, we prove this universality for an arbitrary mixture of homogeneous Gaussian clouds. Empirically, we show that the universality holds also for a broad range of real datasets.


Optimal transfer protocol by incremental layer defrosting

arXiv.org Artificial Intelligence

Transfer learning is a powerful tool enabling model training with limited amounts of data. This technique is particularly useful in real-world problems where data availability is often a serious limitation. The simplest transfer learning protocol is based on ``freezing" the feature-extractor layers of a network pre-trained on a data-rich source task, and then adapting only the last layers to a data-poor target task. This workflow is based on the assumption that the feature maps of the pre-trained model are qualitatively similar to the ones that would have been learned with enough data on the target task. In this work, we show that this protocol is often sub-optimal, and the largest performance gain may be achieved when smaller portions of the pre-trained network are kept frozen. In particular, we make use of a controlled framework to identify the optimal transfer depth, which turns out to depend non-trivially on the amount of available training data and on the degree of source-target task correlation. We then characterize transfer optimality by analyzing the internal representations of two networks trained from scratch on the source and the target task through multiple established similarity measures.


Probing transfer learning with a model of synthetic correlated datasets

arXiv.org Artificial Intelligence

Transfer learning can significantly improve the sample efficiency of neural networks, by exploiting the relatedness between a data-scarce target task and a data-abundant source task. Despite years of successful applications, transfer learning practice often relies on ad-hoc solutions, while theoretical understanding of these procedures is still limited. In the present work, we re-think a solvable model of synthetic data as a framework for modeling correlation between data-sets. This setup allows for an analytic characterization of the generalization performance obtained when transferring the learned feature map from the source to the target task. Focusing on the problem of training two-layer networks in a binary classification setting, we show that our model can capture a range of salient features of transfer learning with real data. Moreover, by exploiting parametric control over the correlation between the two data-sets, we systematically investigate under which conditions the transfer of features is beneficial for generalization.


Signal propagation in continuous approximations of binary neural networks

arXiv.org Machine Learning

The training of stochastic neural network models with binary ($\pm1$) weights and activations via a deterministic and continuous surrogate network is investigated. We derive, using mean field theory, a set of scalar equations describing how input signals propagate through the surrogate network. The equations reveal that these continuous models exhibit an order to chaos transition, and the presence of depth scales that limit the maximum trainable depth. Moreover, we predict theoretically and confirm numerically, that common weight initialization schemes used in standard continuous networks, when applied to the mean values of the stochastic binary weights, yield poor training performance. This study shows that, contrary to common intuition, the means of the stochastic binary weights should be initialised close to $\pm 1$ for deeper networks to be trainable.


On the role of synaptic stochasticity in training low-precision neural networks

arXiv.org Machine Learning

Stochasticity and limited precision of synaptic weights in neural network models are key aspects of both biological and hardware modeling of learning processes. Here we show that a neural network model with stochastic binary weights naturally gives prominence to exponentially rare dense regions of solutions with a number of desirable properties such as robustness and good generalization performance, while typical solutions are isolated and hard to find. Binary solutions of the standard perceptron problem are obtained from a simple gradient descent procedure on a set of real values parametrizing a probability distribution over the binary synapses. Both analytical and numerical results are presented. An algorithmic extension aimed at training discrete deep neural networks is also investigated.


Learning may need only a few bits of synaptic precision

arXiv.org Machine Learning

Learning in neural networks poses peculiar challenges when using discretized rather then continuous synaptic states. The choice of discrete synapses is motivated by biological reasoning and experiments, and possibly by hardware implementation considerations as well. In this paper we extend a previous large deviations analysis which unveiled the existence of peculiar dense regions in the space of synaptic states which accounts for the possibility of learning efficiently in networks with binary synapses. We extend the analysis to synapses with multiple states and generally more plausible biological features. The results clearly indicate that the overall qualitative picture is unchanged with respect to the binary case, and very robust to variation of the details of the model. We also provide quantitative results which suggest that the advantages of increasing the synaptic precision (i.e.~the number of internal synaptic states) rapidly vanish after the first few bits, and therefore that, for practical applications, only few bits may be needed for near-optimal performance, consistently with recent biological findings. Finally, we demonstrate how the theoretical analysis can be exploited to design efficient algorithmic search strategies.