Goto

Collaborating Authors

 Georgiou, Andreas


Multi-megabase scale genome interpretation with genetic language models

arXiv.org Artificial Intelligence

Understanding how molecular changes caused by genetic variation drive disease risk is crucial for deciphering disease mechanisms. However, interpreting genome sequences is challenging because of the vast size of the human genome, and because its consequences manifest across a wide range of cells, tissues and scales -- spanning from molecular to whole organism level. Here, we present Phenformer, a multi-scale genetic language model that learns to generate mechanistic hypotheses as to how differences in genome sequence lead to disease-relevant changes in expression across cell types and tissues directly from DNA sequences of up to 88 million base pairs. Using whole genome sequencing data from more than 150 000 individuals, we show that Phenformer generates mechanistic hypotheses about disease-relevant cell and tissue types that match literature better than existing state-of-the-art methods, while using only sequence data. Furthermore, disease risk predictors enriched by Phenformer show improved prediction performance and generalisation to diverse populations. Accurate multi-megabase scale interpretation of whole genomes without additional experimental data enables both a deeper understanding of molecular mechanisms involved in disease and improved disease risk prediction at the level of individuals.


Deep Multiple Instance Learning for Taxonomic Classification of Metagenomic read sets

arXiv.org Machine Learning

Metagenomic studies have increasingly utilized sequencing technologies in order to analyze DNA fragments found in environmental samples. It can provide useful insights for studying the interactions between hosts and microbes, infectious disease proliferation, and novel species discovery. One important step in this analysis is the taxonomic classification of those DNA fragments. Of particular interest is the determination of the distribution of the taxa of microbes in metagenomic samples. Recent attempts using deep learning focus on architectures that classify single DNA reads independently from each other. In this work, we attempt to solve the task of directly predicting the distribution over the taxa of whole metagenomic read sets. We formulate this task as a Multiple Instance Learning (MIL) problem. We extend architectures used in single-read taxonomic classification with two different types of permutation-invariant MIL pooling layers: a) deepsets and b) attention-based pooling. We illustrate that our architecture can exploit the co-occurrence of species in metagenomic read sets and outperforms the single-read architectures in predicting the distribution over the taxa at higher taxonomic ranks.