Geoffrey J. Gordon
A Unified Approach for Learning the Parameters of Sum-Product Networks
Han Zhao, Pascal Poupart, Geoffrey J. Gordon
We present a unified approach for learning the parameters of Sum-Product networks (SPNs). We prove that any complete and decomposable SPN is equivalent to a mixture of trees where each tree corresponds to a product of univariate distributions. Based on the mixture model perspective, we characterize the objective function when learning SPNs based on the maximum likelihood estimation (MLE) principle and show that the optimization problem can be formulated as a signomial program. We construct two parameter learning algorithms for SPNs by using sequential monomial approximations (SMA) and the concave-convex procedure (CCCP), respectively. The two proposed methods naturally admit multiplicative updates, hence effectively avoiding the projection operation. With the help of the unified framework, we also show that, in the case of SPNs, CCCP leads to the same algorithm as Expectation Maximization (EM) despite the fact that they are different in general.
Learning Neural Networks with Adaptive Regularization
Han Zhao, Yao-Hung Hubert Tsai, Russ R. Salakhutdinov, Geoffrey J. Gordon
Feed-forward neural networks can be understood as a combination of an intermediate representation and a linear hypothesis. While most previous works aim to diversify the representations, we explore the complementary direction by performing an adaptive and data-dependent regularization motivated by the empirical Bayes method. Specifically, we propose to construct a matrix-variate normal prior (on weights) whose covariance matrix has a Kronecker product structure. This structure is designed to capture the correlations in neurons through backpropagation. Under the assumption of this Kronecker factorization, the prior encourages neurons to borrow statistical strength from one another.
Linear Time Computation of Moments in Sum-Product Networks
Han Zhao, Geoffrey J. Gordon
Adversarial Multiple Source Domain Adaptation
Han Zhao, Shanghang Zhang, Guanhang Wu, Josรฉ M. F. Moura, Joao P. Costeira, Geoffrey J. Gordon
Dual Policy Iteration
Wen Sun, Geoffrey J. Gordon, Byron Boots, J. Bagnell
A novel class of Approximate Policy Iteration (API) algorithms have recently demonstrated impressive practical performance (e.g., ExIt [1], AlphaGo-Zero [2]). This new family of algorithms maintains, and alternately optimizes, two policies: a fast, reactive policy (e.g., a deep neural network) deployed at test time, and a slow, non-reactive policy (e.g., Tree Search), that can plan multiple steps ahead. The reactive policy is updated under supervision from the non-reactive policy, while the non-reactive policy is improved via guidance from the reactive policy. In this work we study this class of Dual Policy Iteration (DPI) strategy in an alternating optimization framework and provide a convergence analysis that extends existing API theory. We also develop a special instance of this framework which reduces the update of non-reactive policies to model-based optimal control using learned local models, and provides a theoretically sound way of unifying model-free and model-based RL approaches with unknown dynamics. We demonstrate the efficacy of our approach on various continuous control Markov Decision Processes.
Adversarial Multiple Source Domain Adaptation
Han Zhao, Shanghang Zhang, Guanhang Wu, Josรฉ M. F. Moura, Joao P. Costeira, Geoffrey J. Gordon
While domain adaptation has been actively researched, most algorithms focus on the single-source-single-target adaptation setting. In this paper we propose new generalization bounds and algorithms under both classification and regression settings for unsupervised multiple source domain adaptation. Our theoretical analysis naturally leads to an efficient learning strategy using adversarial neural networks: we show how to interpret it as learning feature representations that are invariant to the multiple domain shifts while still being discriminative for the learning task. To this end, we propose multisource domain adversarial networks (MDAN) that approach domain adaptation by optimizing task-adaptive generalization bounds. To demonstrate the effectiveness of MDAN, we conduct extensive experiments showing superior adaptation performance on both classification and regression problems: sentiment analysis, digit classification, and vehicle counting.
Dual Policy Iteration
Wen Sun, Geoffrey J. Gordon, Byron Boots, J. Bagnell
A novel class of Approximate Policy Iteration (API) algorithms have recently demonstrated impressive practical performance (e.g., ExIt [1], AlphaGo-Zero [2]). This new family of algorithms maintains, and alternately optimizes, two policies: a fast, reactive policy (e.g., a deep neural network) deployed at test time, and a slow, non-reactive policy (e.g., Tree Search), that can plan multiple steps ahead. The reactive policy is updated under supervision from the non-reactive policy, while the non-reactive policy is improved via guidance from the reactive policy. In this work we study this class of Dual Policy Iteration (DPI) strategy in an alternating optimization framework and provide a convergence analysis that extends existing API theory. We also develop a special instance of this framework which reduces the update of non-reactive policies to model-based optimal control using learned local models, and provides a theoretically sound way of unifying model-free and model-based RL approaches with unknown dynamics. We demonstrate the efficacy of our approach on various continuous control Markov Decision Processes.
Learning Neural Networks with Adaptive Regularization
Han Zhao, Yao-Hung Hubert Tsai, Russ R. Salakhutdinov, Geoffrey J. Gordon
Feed-forward neural networks can be understood as a combination of an intermediate representation and a linear hypothesis. While most previous works aim to diversify the representations, we explore the complementary direction by performing an adaptive and data-dependent regularization motivated by the empirical Bayes method. Specifically, we propose to construct a matrix-variate normal prior (on weights) whose covariance matrix has a Kronecker product structure. This structure is designed to capture the correlations in neurons through backpropagation. Under the assumption of this Kronecker factorization, the prior encourages neurons to borrow statistical strength from one another.
Predictive State Recurrent Neural Networks
Carlton Downey, Ahmed Hefny, Byron Boots, Geoffrey J. Gordon, Boyue Li
We present a new model, Predictive State Recurrent Neural Networks (PSRNNs), for filtering and prediction in dynamical systems. PSRNNs draw on insights from both Recurrent Neural Networks (RNNs) and Predictive State Representations (PSRs), and inherit advantages from both types of models. Like many successful RNN architectures, PSRNNs use (potentially deeply composed) bilinear transfer functions to combine information from multiple sources. We show that such bilinear functions arise naturally from state updates in Bayes filters like PSRs, in which observations can be viewed as gating belief states. We also show that PSRNNs can be learned effectively by combining Backpropogation Through Time (BPTT) with an initialization derived from a statistically consistent learning algorithm for PSRs called two-stage regression (2SR). Finally, we show that PSRNNs can be factorized using tensor decomposition, reducing model size and suggesting interesting connections to existing multiplicative architectures such as LSTMs and GRUs. We apply PSRNNs to 4 datasets, and show that we outperform several popular alternative approaches to modeling dynamical systems in all cases.
Linear Time Computation of Moments in Sum-Product Networks
Han Zhao, Geoffrey J. Gordon