Goto

Collaborating Authors

 Genova, David


Keep what you need : extracting efficient subnetworks from large audio representation models

arXiv.org Artificial Intelligence

Recently, research on audio foundation models has witnessed notable advances, as illustrated by the ever improving results on complex downstream tasks. Subsequently, those pretrained networks have quickly been used for various audio applications. These improvements have however resulted in a considerable increase both in size and complexity of these models. Along the environmental concerns this issue raises, this prevents the deployment of such networks on consumer-level devices, and precludes their use for real-time applications. Moreover, this appears contradictory with the specificity of the tasks for which these models are used, which are often simpler compared to extracting a rich, multi-purpose representation from any type of audio data. In this paper, we address this issue with a simple, yet effective method to extract lightweight specialist subnetworks from large foundation models. Specifically, we introduce learnable binary masks in-between the layers of a pretrained representation model. When training the end-to-end model on a downstream task, we add a sparsity-inducing loss to the overall objective, hence learning a compact subnetwork specialized on a single task. Importantly, the weights of the foundation model are kept frozen, resulting into low additional training costs. Once trained, the masked computational units can then be removed from the network, implying significant performance gains. We assess our method on three widespread audio foundation models, each based on a different backbone architecture, and illustrate its effectiveness on common audio representation evaluation tasks, as well as its versatility on both speech, music, and general audio. Code for reproducing the results and supporting webpage are available at https://github.com/gnvIRCAM/Audio-representation-trimming


AI (r)evolution -- where are we heading? Thoughts about the future of music and sound technologies in the era of deep learning

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) technologies such as deep learning are evolving very quickly bringing many changes to our everyday lives. To explore the future impact and potential of AI in the field of music and sound technologies a doctoral day was held between Queen Mary University of London (QMUL, UK) and Sciences et Technologies de la Musique et du Son (STMS, France). Prompt questions about current trends in AI and music were generated by academics from QMUL and STMS. Students from the two institutions then debated these questions. This report presents a summary of the student debates on the topics of: Data, Impact, and the Environment; Responsible Innovation and Creative Practice; Creativity and Bias; and From Tools to the Singularity. The students represent the future generation of AI and music researchers. The academics represent the incumbent establishment. The student debates reported here capture visions, dreams, concerns, uncertainties, and contentious issues for the future of AI and music as the establishment is rightfully challenged by the next generation.


Continuous descriptor-based control for deep audio synthesis

arXiv.org Artificial Intelligence

Despite significant advances in deep models for music generation, the use of these techniques remains restricted to expert users. Before being democratized among musicians, generative models must first provide expressive control over the generation, as this conditions the integration of deep generative models in creative workflows. In this paper, we tackle this issue by introducing a deep generative audio model providing expressive and continuous descriptor-based control, while remaining lightweight enough to be embedded in a hardware synthesizer. We enforce the controllability of real-time generation by explicitly removing salient musical features in the latent space using an adversarial confusion criterion. User-specified features are then reintroduced as additional conditioning information, allowing for continuous control of the generation, akin to a synthesizer knob. We assess the performance of our method on a wide variety of sounds including instrumental, percussive and speech recordings while providing both timbre and attributes transfer, allowing new ways of generating sounds.