Geiger, Martin Josef
Solving the Torpedo Scheduling Problem
Geiger, Martin Josef, Kletzander, Lucas, Musliu, Nysret
The article presents a solution approach for the Torpedo Scheduling Problem, an operational planning problem found in steel production. The problem consists of the integrated scheduling and routing of torpedo cars, i. e. steel transporting vehicles, from a blast furnace to steel converters. In the continuous metallurgic transformation of iron into steel, the discrete transportation step of molten iron must be planned with considerable care in order to ensure a continuous material flow. The problem is solved by a Simulated Annealing algorithm, coupled with an approach of reducing the set of feasible material assignments. The latter is based on logical reductions and lower bound calculations on the number of torpedo cars. Experimental investigations are performed on a larger number of problem instances, which stem from the 2016 implementation challenge of the Association of Constraint Programming (ACP). Our approach was ranked first (joint first place) in the 2016 ACP challenge and found optimal solutions for all used instances in this challenge.
Solution Representations and Local Search for the bi-objective Inventory Routing Problem
Barthรฉlemy, Thibaut, Geiger, Martin Josef, Sevaux, Marc
The solution of the biobjective IRP is rather challenging, even for metaheuristics. We are still lacking a profound understanding of appropriate solution representations and effective neighborhood structures. Clearly, both the delivery volumes and the routing aspects of the alternatives need to be reflected in an encoding, and must be modified when searching by means of local search. Our work contributes to the better understanding of such solution representations. On the basis of an experimental investigation, the advantages and drawbacks of two encodings are studied and compared.
Practical inventory routing: A problem definition and an optimization method
Geiger, Martin Josef, Sevaux, Marc
The global objective of this work is to provide practical optimization methods to companies involved in inventory routing problems, taking into account this new type of data. Also, companies are sometimes not able to deal with changing plans every period and would like to adopt regular structures for serving customers.
On the comparison of plans: Proposition of an instability measure for dynamic machine scheduling
Geiger, Martin Josef
On the basis of an analysis of previous research, we present a generalized approach for measuring the difference of plans with an exemplary application to machine scheduling. Our work is motivated by the need for such measures, which are used in dynamic scheduling and planning situations. In this context, quantitative approaches are needed for the assessment of the robustness and stability of schedules. Obviously, any `robustness' or `stability' of plans has to be defined w. r. t. the particular situation and the requirements of the human decision maker. Besides the proposition of an instability measure, we therefore discuss possibilities of obtaining meaningful information from the decision maker for the implementation of the introduced approach.
Improvements for multi-objective flow shop scheduling by Pareto Iterated Local Search
Geiger, Martin Josef
The article describes the proposition and application of a local search metaheuristic for multi-objective optimization problems. It is based on two main principles of heuristic search, intensification through variable neighborhoods, and diversification through perturbations and successive iterations in favorable regions of the search space. The concept is successfully tested on permutation flow shop scheduling problems under multiple objectives and compared to other local search approaches. While the obtained results are encouraging in terms of their quality, another positive attribute of the approach is its simplicity as it does require the setting of only very few parameters.
The Single Machine Total Weighted Tardiness Problem - Is it (for Metaheuristics) a Solved Problem ?
Geiger, Martin Josef
The article presents a study of rather simple local search heuristics for the single machine total weighted tardiness problem (SMTWTP), namely hillclimbing and Variable Neighborhood Search. In particular, we revisit these approaches for the SMTWTP as there appears to be a lack of appropriate/challenging benchmark instances in this case. The obtained results are impressive indeed. Only few instances remain unsolved, and even those are approximated within 1% of the optimal/best known solutions. Our experiments support the claim that metaheuristics for the SMTWTP are very likely to lead to good results, and that, before refining search strategies, more work must be done with regard to the proposition of benchmark data. Some recommendations for the construction of such data sets are derived from our investigations.
MOOPPS: An Optimization System for Multi Objective Scheduling
Geiger, Martin Josef
In the current paper, we present an optimization system solving multi objective production scheduling problems (MOOPPS). The identification of Pareto optimal alternatives or at least a close approximation of them is possible by a set of implemented metaheuristics. Necessary control parameters can easily be adjusted by the decision maker as the whole software is fully menu driven. This allows the comparison of different metaheuristic algorithms for the considered problem instances. Results are visualized by a graphical user interface showing the distribution of solutions in outcome space as well as their corresponding Gantt chart representation. The identification of a most preferred solution from the set of efficient solutions is supported by a module based on the aspiration interactive method (AIM). The decision maker successively defines aspiration levels until a single solution is chosen. After successfully competing in the finals in Ronneby, Sweden, the MOOPPS software has been awarded the European Academic Software Award 2002 (http://www.bth.se/llab/easa_2002.nsf)
Variable Neighborhood Search for the University Lecturer-Student Assignment Problem
Geiger, Martin Josef, Wenger, Wolf
The paper presents a study of local search heuristics in general and variable neighborhood search in particular for the resolution of an assignment problem studied in the practical work of universities. Here, students have to be assigned to scientific topics which are proposed and supported by members of staff. The problem involves the optimization under given preferences of students which may be expressed when applying for certain topics. It is possible to observe that variable neighborhood search leads to superior results for the tested problem instances. One instance is taken from an actual case, while others have been generated based on the real world data to support the analysis with a deeper analysis. An extension of the problem has been formulated by integrating a second objective function that simultaneously balances the workload of the members of staff while maximizing utility of the students. The algorithmic approach has been prototypically implemented in a computer system. One important aspect in this context is the application of the research work to problems of other scientific institutions, and therefore the provision of decision support functionalities.
Proposition of the Interactive Pareto Iterated Local Search Procedure - Elements and Initial Experiments
Geiger, Martin Josef
The article presents an approach to interactively solve multi-objective optimization problems. While the identification of efficient solutions is supported by computational intelligence techniques on the basis of local search, the search is directed by partial preference information obtained from the decision maker. An application of the approach to biobjective portfolio optimization, modeled as the well-known knapsack problem, is reported, and experimental results are reported for benchmark instances taken from the literature. In brief, we obtain encouraging results that show the applicability of the approach to the described problem.
An application of the Threshold Accepting metaheuristic for curriculum based course timetabling
Geiger, Martin Josef
The article presents a local search approach for the solution of timetabling problems in general, with a particular implementation for competition track 3 of the International Timetabling Competition 2007 (ITC 2007). The heuristic search procedure is based on Threshold Accepting to overcome local optima. A stochastic neighborhood is proposed and implemented, randomly removing and reassigning events from the current solution. The overall concept has been incrementally obtained from a series of experiments, which we describe in each (sub)section of the paper. In result, we successfully derived a potential candidate solution approach for the finals of track 3 of the ITC 2007.