Not enough data to create a plot.
Try a different view from the menu above.
Geiger, D.
Randomized Algorithms for the Loop Cutset Problem
Bar-Yehuda, R., Becker, A., Geiger, D.
We show how to find a minimum weight loop cutset in a Bayesian network with high probability. Finding such a loop cutset is the first step in the method of conditioning for inference. Our randomized algorithm for finding a loop cutset outputs a minimum loop cutset after O(c 6^k kn) steps with probability at least 1 - (1 - 1/(6^k))^c6^k, where c > 1 is a constant specified by the user, k is the minimal size of a minimum weight loop cutset, and n is the number of vertices. We also show empirically that a variant of this algorithm often finds a loop cutset that is closer to the minimum weight loop cutset than the ones found by the best deterministic algorithms known.
Randomized Algorithms for the Loop Cutset Problem
Becker, A., Bar-Yehuda, R., Geiger, D.
We show how to find a minimum weight loop cutset in a Bayesian network with high probability. Finding such a loop cutset is the first step in the method of conditioning for inference. Our randomized algorithm for finding a loop cutset outputs a minimum loop cutset after O(c 6^k kn) steps with probability at least 1 - (1 - 1/(6^k))^c6^k, where c > 1 is a constant specified by the user, k is the minimal size of a minimum weight loop cutset, and n is the number of vertices. We also show empirically that a variant of this algorithm often finds a loop cutset that is closer to the minimum weight loop cutset than the ones found by the best deterministic algorithms known.
Resolving motion ambiguities
Diamantaras, K. I., Geiger, D.
We address the problem of optical flow reconstruction and in particular theproblem of resolving ambiguities near edges. They occur due to (i) the aperture problem and (ii) the occlusion problem, where pixels on both sides of an intensity edge are assigned the same velocity estimates (and confidence). However, these measurements are correct for just one side of the edge (the non occluded one). Our approach is to introduce an uncertamty field with respect to the estimates and confidence measures. We note that the confidence measuresare large at intensity edges and larger at the convex sides of the edges, i.e. inside corners, than at the concave side. We resolve the ambiguities through local interactions via coupled Markov random fields (MRF). The result is the detection of motion for regions of images with large global convexity.
Resolving motion ambiguities
Diamantaras, K. I., Geiger, D.
We address the problem of optical flow reconstruction and in particular the problem of resolving ambiguities near edges. They occur due to (i) the aperture problem and (ii) the occlusion problem, where pixels on both sides of an intensity edge are assigned the same velocity estimates (and confidence). However, these measurements are correct for just one side of the edge (the non occluded one). Our approach is to introduce an uncertamty field with respect to the estimates and confidence measures. We note that the confidence measures are large at intensity edges and larger at the convex sides of the edges, i.e. inside corners, than at the concave side. We resolve the ambiguities through local interactions via coupled Markov random fields (MRF). The result is the detection of motion for regions of images with large global convexity.