Plotting

 Geffner, Hector


Soft Goals Can Be Compiled Away

arXiv.org Artificial Intelligence

Soft goals extend the classical model of planning with a simple model of preferences. The best plans are then not the ones with least cost but the ones with maximum utility, where the utility of a plan is the sum of the utilities of the soft goals achieved minus the plan cost. Finding plans with high utility appears to involve two linked problems: choosing a subset of soft goals to achieve and finding a low-cost plan to achieve them. New search algorithms and heuristics have been developed for planning with soft goals, and a new track has been introduced in the International Planning Competition (IPC) to test their performance. In this note, we show however that these extensions are not needed: soft goals do not increase the expressive power of the basic model of planning with action costs, as they can easily be compiled away. We apply this compilation to the problems of the net-benefit track of the most recent IPC, and show that optimal and satisficing cost-based planners do better on the compiled problems than optimal and satisficing net-benefit planners on the original problems with explicit soft goals. Furthermore, we show that penalties, or negative preferences expressing conditions to avoid, can also be compiled away using a similar idea.


Compiling Uncertainty Away in Conformant Planning Problems with Bounded Width

arXiv.org Artificial Intelligence

Conformant planning is the problem of finding a sequence of actions for achieving a goal in the presence of uncertainty in the initial state or action effects. The problem has been approached as a path-finding problem in belief space where good belief representations and heuristics are critical for scaling up. In this work, a different formulation is introduced for conformant problems with deterministic actions where they are automatically converted into classical ones and solved by an off-the-shelf classical planner. The translation maps literals L and sets of assumptions t about the initial situation, into new literals KL/t that represent that L must be true if t is initially true. We lay out a general translation scheme that is sound and establish the conditions under which the translation is also complete. We show that the complexity of the complete translation is exponential in a parameter of the problem called the conformant width, which for most benchmarks is bounded. The planner based on this translation exhibits good performance in comparison with existing planners, and is the basis for T0, the best performing planner in the Conformant Track of the 2006 International Planning Competition.


A Concise Introduction to Models and Methods for Automated Planning

Morgan & Claypool Publishers

In this book, we look at a variety of models used in AI planning, and at the methods that have been developed for solving them. The goal is to provide a modern and coherent view of planning that is precise, concise, and mostly self-contained, without being shallow. The target audience of the book are students and researchers interested in autonomous. ISBN 9781608459698, 141 pages.


Arguing for Decisions: A Qualitative Model of Decision Making

arXiv.org Artificial Intelligence

We develop a qualitative model of decision making with two aims: to describe how people make simple decisions and to enable computer programs to do the same. Current approaches based on Planning or Decisions Theory either ignore uncertainty and tradeoffs, or provide languages and algorithms that are too complex for this task. The proposed model provides a language based on rules, a semantics based on high probabilities and lexicographical preferences, and a transparent decision procedure where reasons for and against decisions interact. The model is no substitude for Decision Theory, yet for decisions that people find easy to explain it may provide an appealing alternative.


Action Selection for MDPs: Anytime AO* Versus UCT

AAAI Conferences

One of the natural approaches for selecting actions in very From this perspective, an algorithm like RTDP fails on two large state spaces is by performing a limited amount of grounds: first, RTDP does not appear to make best use of lookahead. In the contexts of discounted MDPs, Kearns, short time windows in large state spaces; second, and more Mansour, and Ng have shown that near to optimal actions importantly, RTDP can use admissible heuristics but not informed can be selected by considering a sampled lookahead tree that base policies. On the other hand, algorithms like Policy is sufficiently sparse, whose size depends on the discount Iteration (Howard 1971), deliver all of these features except factor and the suboptimality bound but not on the number of one: they are exhaustive, and thus even to get started, problem states (Kearns, Mansour, and Ng 1999). The UCT they need vectors with the size of the state space. At the algorithm (Kocsis and Szepesvári 2006) is a version of this same time, while there are non-exhaustive versions of (asynchronous) form of Monte Carlo planning, where the lookahead trees Value Iteration such as RTDP, there are no similar are not grown depth-first but'best-first', following a selection'focused' versions of Policy Iteration ensuring anytime optimality.


Width and Complexity of Belief Tracking in Non-Deterministic Conformant and Contingent Planning

AAAI Conferences

It has been shown recently that the complexity of belief tracking in deterministic conformant and contingent planning is exponential in a width parameter that is often bounded and small. In this work, we introduce a new width notion that applies to non-deterministic conformant and contingent problems as well. We also develop a belief tracking algorithm for non-deterministic problems that is exponential in the problem width, analyze the width of non-deterministic benchmarks, compare the new notion to the previous one over deterministic problems, and present experimental results.


Qualitative Numeric Planning

AAAI Conferences

We consider a new class of planning problems involving a set of non-negative real variables, and a set of non-deterministic actions that increase or decrease the values of these variables by some arbitrary amount. The formulas specifying the initial state, goal state, or action preconditions can only assert whether certain variables are equal to zero or not. Assuming that the state of the variables is fully observable, we obtain two results. First, the solution to the problem can be expressed as a policy mapping qualitative states into actions, where a qualitative state includes a Boolean variable for each original variable, indicating whether its value is zero or not. Second, testing whether any such policy, that may express nested loops of actions, is a solution to the problem, can be determined in time that is polynomial in the qualitative state space, which is much smaller than the original infinite state space. We also report experimental results using a simple generate-and-test planner to illustrate these findings.


Heuristic Search for Generalized Stochastic Shortest Path MDPs

AAAI Conferences

Research in efficient methods for solving infinite-horizon MDPs has so far concentrated primarily on discounted MDPs and the more general stochastic shortest path problems (SSPs). These are MDPs with 1) an optimal value function V* that is the unique solution of Bellman equation and 2) optimal policies that are the greedy policies w.r.t. V*. This paper’s main contribution is the description of a new class of MDPs, that have well-defined optimal solutions that do not comply with either 1 or 2 above. We call our new class Generalized Stochastic Shortest Path (GSSP) problems. GSSP allows more general reward structure than SSP and subsumes several established MDP types including SSP, positive-bounded, negative, and discounted-reward models. While existing efficient heuristic search algorithms like LAO* and LRTDP are not guaranteed to converge to the optimal value function for GSSPs, we present a new heuristic-search-based family of algorithms, FRET (Find, Revise, Eliminate Traps). A preliminary empirical evaluation shows that FRET solves GSSPs much more efficiently than Value Iteration.


Probabilistic Plan Recognition Using Off-the-Shelf Classical Planners

AAAI Conferences

Plan recognition is the problem of inferring the goals and plans of an agent after observing its behavior. Recently, it has been shown that this problem can be solved efficiently, without the need of a plan library, using slightly modified planning algorithms. In this work, we extend this approach to the more general problem of probabilistic plan recognition where a probability distribution over the set of goals is sought under the assumptions that actions have deterministic effects and both agent and observer have complete information about the initial state. We show that this problem can be solved efficiently using classical planners provided that the probability of a partially observed execution given a goal is defined in terms of the cost difference of achieving the goal under two conditions: complying with the observations, and not complying with them. This cost, and hence the posterior goal probabilities, are computed by means of two calls to a classical planner that no longer has to be modified in any way. A number of examples is considered to illustrate the quality, flexibility, and scalability of the approach.


The Model-Based Approach to Autonomous Behavior: A Personal View

AAAI Conferences

The selection of the action to do next is one of the central problems faced by autonomous agents. In AI, three approaches have been used to address this problem: the programming-based approach, where the agent controller is given by the programmer, the learning-based approach, where the controller is induced from experience via a learning algorithm, and the model-based approach, where the controller is derived from a model of the problem. Planning in AI is best conceived as the model-based approach to action selection. The models represent the initial situation, actions, sensors, and goals. The main challenge in planning is computational, as all the models, whether accommodating feedback and uncertainty or not, are intractable in the worst case. In this article, I review some of the models considered in current planning research, the progress achieved in solving these models, and some of the open problems.