Goto

Collaborating Authors

 Geffner, Hector


Learning Sketch Decompositions in Planning via Deep Reinforcement Learning

arXiv.org Artificial Intelligence

In planning and reinforcement learning, the identification of common subgoal structures across problems is important when goals are to be achieved over long horizons. Recently, it has been shown that such structures can be expressed as feature-based rules, called sketches, over a number of classical planning domains. These sketches split problems into subproblems which then become solvable in low polynomial time by a greedy sequence of IW$(k)$ searches. Methods for learning sketches using feature pools and min-SAT solvers have been developed, yet they face two key limitations: scalability and expressivity. In this work, we address these limitations by formulating the problem of learning sketch decompositions as a deep reinforcement learning (DRL) task, where general policies are sought in a modified planning problem where the successor states of a state s are defined as those reachable from s through an IW$(k)$ search. The sketch decompositions obtained through this method are experimentally evaluated across various domains, and problems are regarded as solved by the decomposition when the goal is reached through a greedy sequence of IW$(k)$ searches. While our DRL approach for learning sketch decompositions does not yield interpretable sketches in the form of rules, we demonstrate that the resulting decompositions can often be understood in a crisp manner.


Learning to Ground Existentially Quantified Goals

arXiv.org Artificial Intelligence

Goal instructions for autonomous AI agents cannot assume that objects have unique names. Instead, objects in goals must be referred to by providing suitable descriptions. However, this raises problems in both classical planning and generalized planning. The standard approach to handling existentially quantified goals in classical planning involves compiling them into a DNF formula that encodes all possible variable bindings and adding dummy actions to map each DNF term into the new, dummy goal. This preprocessing is exponential in the number of variables. In generalized planning, the problem is different: even if general policies can deal with any initial situation and goal, executing a general policy requires the goal to be grounded to define a value for the policy features. The problem of grounding goals, namely finding the objects to bind the goal variables, is subtle: it is a generalization of classical planning, which is a special case when there are no goal variables to bind, and constraint reasoning, which is a special case when there are no actions. In this work, we address the goal grounding problem with a novel supervised learning approach. A GNN architecture, trained to predict the cost of partially quantified goals over small domain instances is tested on larger instances involving more objects and different quantified goals. The proposed architecture is evaluated experimentally over several planning domains where generalization is tested along several dimensions including the number of goal variables and objects that can bind such variables. The scope of the approach is also discussed in light of the known relationship between GNNs and C2 logics.


Symmetries and Expressive Requirements for Learning General Policies

arXiv.org Artificial Intelligence

State symmetries play an important role in planning and generalized planning. In the first case, state symmetries can be used to reduce the size of the search; in the second, to reduce the size of the training set. In the case of general planning, however, it is also critical to distinguish non-symmetric states, i.e., states that represent non-isomorphic relational structures. However, while the language of first-order logic distinguishes non-symmetric states, the languages and architectures used to represent and learn general policies do not. In particular, recent approaches for learning general policies use state features derived from description logics or learned via graph neural networks (GNNs) that are known to be limited by the expressive power of C_2, first-order logic with two variables and counting. In this work, we address the problem of detecting symmetries in planning and generalized planning and use the results to assess the expressive requirements for learning general policies over various planning domains. For this, we map planning states to plain graphs, run off-the-shelf algorithms to determine whether two states are isomorphic with respect to the goal, and run coloring algorithms to determine if C_2 features computed logically or via GNNs distinguish non-isomorphic states. Symmetry detection results in more effective learning, while the failure to detect non-symmetries prevents general policies from being learned at all in certain domains.


Learning Generalized Policies for Fully Observable Non-Deterministic Planning Domains

arXiv.org Artificial Intelligence

General policies represent reactive strategies for solving large families of planning problems like the infinite collection of solvable instances from a given domain. Methods for learning such policies from a collection of small training instances have been developed successfully for classical domains. In this work, we extend the formulations and the resulting combinatorial methods for learning general policies over fully observable, non-deterministic (FOND) domains. We also evaluate the resulting approach experimentally over a number of benchmark domains in FOND planning, present the general policies that result in some of these domains, and prove their correctness. The method for learning general policies for FOND planning can actually be seen as an alternative FOND planning method that searches for solutions, not in the given state space but in an abstract space defined by features that must be learned as well.


On Policy Reuse: An Expressive Language for Representing and Executing General Policies that Call Other Policies

arXiv.org Artificial Intelligence

Recently, a simple but powerful language for expressing and learning general policies and problem decompositions (sketches) has been introduced in terms of rules defined over a set of Boolean and numerical features. In this work, we consider three extensions of this language aimed at making policies and sketches more flexible and reusable: internal memory states, as in finite state controllers; indexical features, whose values are a function of the state and a number of internal registers that can be loaded with objects; and modules that wrap up policies and sketches and allow them to call each other by passing parameters. In addition, unlike general policies that select state transitions rather than ground actions, the new language allows for the selection of such actions. The expressive power of the resulting language for policies and sketches is illustrated through a number of examples.


Learning General Policies for Classical Planning Domains: Getting Beyond C$_2$

arXiv.org Artificial Intelligence

GNN-based approaches for learning general policies across planning domains are limited by the expressive power of $C_2$, namely; first-order logic with two variables and counting. This limitation can be overcomed by transitioning to $k$-GNNs, for $k=3$, wherein object embeddings are substituted with triplet embeddings. Yet, while $3$-GNNs have the expressive power of $C_3$, unlike $1$- and $2$-GNNs that are confined to $C_2$, they require quartic time for message exchange and cubic space for embeddings, rendering them impractical. In this work, we introduce a parameterized version of relational GNNs. When $t$ is infinity, R-GNN[$t$] approximates $3$-GNNs using only quadratic space for embeddings. For lower values of $t$, such as $t=1$ and $t=2$, R-GNN[$t$] achieves a weaker approximation by exchanging fewer messages, yet interestingly, often yield the $C_3$ features required in several planning domains. Furthermore, the new R-GNN[$t$] architecture is the original R-GNN architecture with a suitable transformation applied to the input states only. Experimental results illustrate the clear performance gains of R-GNN[$1$] and R-GNN[$2$] over plain R-GNNs, and also over edge transformers that also approximate $3$-GNNs.


General Policies, Subgoal Structure, and Planning Width

arXiv.org Artificial Intelligence

It has been observed that many classical planning domains with atomic goals can be solved by means of a simple polynomial exploration procedure, called IW, that runs in time exponential in the problem width, which in these cases is bounded and small. Yet, while the notion of width has become part of state-of-the-art planning algorithms such as BFWS, there is no good explanation for why so many benchmark domains have bounded width when atomic goals are considered. In this work, we address this question by relating bounded width with the existence of general optimal policies that in each planning instance are represented by tuples of atoms of bounded size. We also define the notions of (explicit) serializations and serialized width that have a broader scope as many domains have a bounded serialized width but no bounded width. Such problems are solved non-optimally in polynomial time by a suitable variant of the Serialized IW algorithm. Finally, the language of general policies and the semantics of serializations are combined to yield a simple, meaningful, and expressive language for specifying serializations in compact form in the form of sketches, which can be used for encoding domain control knowledge by hand or for learning it from small examples. Sketches express general problem decompositions in terms of subgoals, and sketches of bounded width express problem decompositions that can be solved in polynomial time.


FOND Planning with Explicit Fairness Assumptions

Journal of Artificial Intelligence Research

We consider the problem of reaching a propositional goal condition in fully-observable nondeterministic (FOND) planning under a general class of fairness assumptions that are given explicitly. The fairness assumptions are of the form A/B and say that state trajectories that contain infinite occurrences of an action a from A in a state s and finite occurrence of actions from B, must also contain infinite occurrences of action a in s followed by each one of its possible outcomes. The infinite trajectories that violate this condition are deemed as unfair, and the solutions are policies for which all the fair trajectories reach a goal state. We show that strong and strong-cyclic FOND planning, as well as QNP planning, a planning model introduced recently for generalized planning, are all special cases of FOND planning with fairness assumptions of this form which can also be combined. FOND+ planning, as this form of planning is called, combines the syntax of FOND planning with some of the versatility of LTL for expressing fairness constraints. A sound and complete FOND+ planner is implemented by reducing FOND+ planning to answer set programs, and its performance is evaluated in comparison with FOND and QNP planners, and LTL synthesis tools. Two other FOND+ planners are introduced as well which are more scalable but are not complete.  


Learning General Optimal Policies with Graph Neural Networks: Expressive Power, Transparency, and Limits

arXiv.org Artificial Intelligence

It has been recently shown that general policies for many classical planning domains can be expressed and learned in terms of a pool of features defined from the domain predicates using a description logic grammar. At the same time, most description logics correspond to a fragment of $k$-variable counting logic ($C_k$) for $k=2$, that has been shown to provide a tight characterization of the expressive power of graph neural networks. In this work, we make use of these results to understand the power and limits of using graph neural networks (GNNs) for learning optimal general policies over a number of tractable planning domains where such policies are known to exist. For this, we train a simple GNN in a supervised manner to approximate the optimal value function $V^{*}(s)$ of a number of sample states $s$. As predicted by the theory, it is observed that general optimal policies are obtained in domains where general optimal value functions can be defined with $C_2$ features but not in those requiring more expressive $C_3$ features. In addition, it is observed that the features learned are in close correspondence with the features needed to express $V^{*}$ in closed form. The theory and the analysis of the domains let us understand the features that are actually learned as well as those that cannot be learned in this way, and let us move in a principled manner from a combinatorial optimization approach to learning general policies to a potentially, more robust and scalable approach based on deep learning.


Target Languages (vs. Inductive Biases) for Learning to Act and Plan

arXiv.org Artificial Intelligence

Recent breakthroughs in AI have shown the remarkable power of deep learning and deep reinforcement learning. These developments, however, have been tied to specific tasks, and progress in out-of-distribution generalization has been limited. While it is assumed that these limitations can be overcome by incorporating suitable inductive biases, the notion of inductive biases itself is often left vague and does not provide meaningful guidance. In the paper, I articulate a different learning approach where representations do not emerge from biases in a neural architecture but are learned over a given target language with a known semantics. The basic ideas are implicit in mainstream AI where representations have been encoded in languages ranging from fragments of first-order logic to probabilistic structural causal models. The challenge is to learn from data, the representations that have traditionally been crafted by hand. Generalization is then a result of the semantics of the language. The goals of the paper and talk are to make these ideas explicit, to place them in a broader context where the design of the target language is crucial, and to illustrate them in the context of learning to act and plan. For this, after a general discussion, I consider learning representations of actions, general policies, and general decompositions. In these cases, learning is formulated as a combinatorial optimization problem but nothing prevents the use deep learning techniques instead. Indeed, learning representations over languages with a known semantics provides an account of what is to be learned, while learning representations with neural nets provides a complementary account of how representations can be learned. The challenge and the opportunity is to bring the two together.