Geder, Jason
Deep Learning Models for Flapping Fin Unmanned Underwater Vehicle Control System Gait Optimization
Zhou, Brian, Viswanath, Kamal, Geder, Jason, Sharma, Alisha, Lee, Julian
The last few decades have led to the rise of research focused on propulsion and control systems for bio-inspired unmanned underwater vehicles (UUVs), which provide more maneuverable alternatives to traditional UUVs in underwater missions. Recent work has explored the use of time-series neural network surrogate models to predict thrust and power from vehicle design and fin kinematics. We develop a search-based inverse model that leverages kinematics-to-thrust and kinematics-to-power neural network models for control system design. Our inverse model finds a set of fin kinematics with the multi-objective goal of reaching a target thrust under power constraints while creating a smooth kinematics transition between flapping cycles. We demonstrate how a control system integrating this inverse model can make online, cycle-to-cycle adjustments to prioritize different system objectives, with improvements in increasing thrust generation or reducing power consumption of any given movement upwards of 0.5 N and 3.0 W in a range of 2.2 N and 9.0 W. As propulsive efficiency is of utmost importance for flapping-fin UUVs in order to extend their range and endurance for essential operations but lacks prior research, we develop a non-dimensional figure of merit (FOM), derived from measures of propulsive efficiency, that is able to evaluate different fin designs and kinematics, and allow for comparison with other bio-inspired platforms. We use the developed FOM to analyze optimal gaits and compare the performance between different fin materials, providing a better understanding of how fin materials affect thrust generation and propulsive efficiency and allowing us to inform control systems and weight for efficiency on the developed inverse gait-selector model.
Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems
Lee, Julian, Viswanath, Kamal, Sharma, Alisha, Geder, Jason, Ramamurti, Ravi, Pruessner, Marius D.
Flapping-fin underwater vehicle propulsion systems provide an alternative to propeller-driven systems in situations that require involve a constrained environment or require high maneuverability. Testing new configurations through experiments or high-fidelity simulations is an expensive process, slowing development of new systems. This is especially true when introducing new fin geometries. In this work, we propose machine learning approaches for thrust prediction given the system's fin geometries and kinematics. We introduce data-efficient fin shape parameterization strategies that enable our network to predict thrust profiles for unseen fin geometries given limited fin shapes in input data. In addition to faster development of systems, generalizable surrogate models offer fast, accurate predictions that could be used on an unmanned underwater vehicle control system.
Acoustic Beamforming for Object-relative Distance Estimation and Control in Unmanned Air Vehicles using Propulsion System Noise
Sharma, Alisha, Geder, Jason, Lingevitch, Joseph, Martin, Theodore, Lofaro, Daniel, Sofge, Donald
Unmanned air vehicles often produce significant noise from their propulsion systems. Using this broadband signal as "acoustic illumination" for an auxiliary sensing system could make vehicles more robust at a minimal cost. We present an acoustic beamforming-based algorithm that estimates object-relative distance with a small two-microphone array using the generated propulsion system noise of a vehicle. We demonstrate this approach in several closed-loop distance feedback control tests with a mounted quad-rotor vehicle in a noisy environment and show accurate object-relative distance estimates more than 2x further than the baseline channel-based approach. We conclude that this approach is robust to several practical vehicle and noise situations and shows promise for use in more complex operating environments.