Ge, Yao
HILGEN: Hierarchically-Informed Data Generation for Biomedical NER Using Knowledgebases and Large Language Models
Ge, Yao, Guo, Yuting, Das, Sudeshna, Rajwal, Swati, Bozkurt, Selen, Sarker, Abeed
We present HILGEN, a Hierarchically-Informed Data Generation approach that combines domain knowledge from the Unified Medical Language System (UMLS) with synthetic data generated by large language models (LLMs), specifically GPT-3.5. Our approach leverages UMLS's hierarchical structure to expand training data with related concepts, while incorporating contextual information from LLMs through targeted prompts aimed at automatically generating synthetic examples for sparsely occurring named entities. The performance of the HILGEN approach was evaluated across four biomedical NER datasets (MIMIC III, BC5CDR, NCBI-Disease, and Med-Mentions) using BERT-Large and DANN (Data Augmentation with Nearest Neighbor Classifier) models, applying various data generation strategies, including UMLS, GPT-3.5, and their best ensemble. For the BERT-Large model, incorporating UMLS led to an average F1 score improvement of 40.36%, while using GPT-3.5 resulted in a comparable average increase of 40.52%. The Best-Ensemble approach using BERT-Large achieved the highest improvement, with an average increase of 42.29%. DANN model's F1 score improved by 22.74% on average using the UMLS-only approach. The GPT-3.5-based method resulted in a 21.53% increase, and the Best-Ensemble DANN model showed a more notable improvement, with an average increase of 25.03%. Our proposed HILGEN approach improves NER performance in few-shot settings without requiring additional manually annotated data. Our experiments demonstrate that an effective strategy for optimizing biomedical NER is to combine biomedical knowledge curated in the past, such as the UMLS, and generative LLMs to create synthetic training instances. Our future research will focus on exploring additional innovative synthetic data generation strategies for further improving NER performance.
Two-layer retrieval augmented generation framework for low-resource medical question-answering: proof of concept using Reddit data
Das, Sudeshna, Ge, Yao, Guo, Yuting, Rajwal, Swati, Hairston, JaMor, Powell, Jeanne, Walker, Drew, Peddireddy, Snigdha, Lakamana, Sahithi, Bozkurt, Selen, Reyna, Matthew, Sameni, Reza, Xiao, Yunyu, Kim, Sangmi, Chandler, Rasheeta, Hernandez, Natalie, Mowery, Danielle, Wightman, Rachel, Love, Jennifer, Spadaro, Anthony, Perrone, Jeanmarie, Sarker, Abeed
Retrieval augmented generation (RAG) provides the capability to constrain generative model outputs, and mitigate the possibility of hallucination, by providing relevant in-context text. The number of tokens a generative large language model (LLM) can incorporate as context is finite, thus limiting the volume of knowledge from which to generate an answer. We propose a two-layer RAG framework for query-focused answer generation and evaluate a proof-of-concept for this framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. The evaluations demonstrate the effectiveness of the two-layer framework in resource constrained settings to enable researchers in obtaining near real-time data from users.
Reddit-Impacts: A Named Entity Recognition Dataset for Analyzing Clinical and Social Effects of Substance Use Derived from Social Media
Ge, Yao, Das, Sudeshna, O'Connor, Karen, Al-Garadi, Mohammed Ali, Gonzalez-Hernandez, Graciela, Sarker, Abeed
Substance use disorders (SUDs) are a growing concern globally, necessitating enhanced understanding of the problem and its trends through data-driven research. Social media are unique and important sources of information about SUDs, particularly since the data in such sources are often generated by people with lived experiences. In this paper, we introduce Reddit-Impacts, a challenging Named Entity Recognition (NER) dataset curated from subreddits dedicated to discussions on prescription and illicit opioids, as well as medications for opioid use disorder. The dataset specifically concentrates on the lesser-studied, yet critically important, aspects of substance use--its clinical and social impacts. We collected data from chosen subreddits using the publicly available Application Programming Interface for Reddit. We manually annotated text spans representing clinical and social impacts reported by people who also reported personal nonmedical use of substances including but not limited to opioids, stimulants and benzodiazepines. Our objective is to create a resource that can enable the development of systems that can automatically detect clinical and social impacts of substance use from text-based social media data. The successful development of such systems may enable us to better understand how nonmedical use of substances affects individual health and societal dynamics, aiding the development of effective public health strategies. In addition to creating the annotated data set, we applied several machine learning models to establish baseline performances. Specifically, we experimented with transformer models like BERT, and RoBERTa, one few-shot learning model DANN by leveraging the full training dataset, and GPT-3.5 by using one-shot learning, for automatic NER of clinical and social impacts. The dataset has been made available through the 2024 SMM4H shared tasks.
Scalable Attribution of Adversarial Attacks via Multi-Task Learning
Guo, Zhongyi, Han, Keji, Ge, Yao, Ji, Wei, Li, Yun
Deep neural networks (DNNs) can be easily fooled by adversarial attacks during inference phase when attackers add imperceptible perturbations to original examples, i.e., adversarial examples. Many works focus on adversarial detection and adversarial training to defend against adversarial attacks. However, few works explore the tool-chains behind adversarial examples, which can help defenders to seize the clues about the originator of the attack, their goals, and provide insight into the most effective defense algorithm against corresponding attacks. With such a gap, it is necessary to develop techniques that can recognize tool-chains that are leveraged to generate the adversarial examples, which is called Adversarial Attribution Problem (AAP). In this paper, AAP is defined as the recognition of three signatures, i.e., {\em attack algorithm}, {\em victim model} and {\em hyperparameter}. Current works transfer AAP into single label classification task and ignore the relationship between these signatures. The former will meet combination explosion problem as the number of signatures is increasing. The latter dictates that we cannot treat AAP simply as a single task problem. We first conduct some experiments to validate the attributability of adversarial examples. Furthermore, we propose a multi-task learning framework named Multi-Task Adversarial Attribution (MTAA) to recognize the three signatures simultaneously. MTAA contains perturbation extraction module, adversarial-only extraction module and classification and regression module. It takes the relationship between attack algorithm and corresponding hyperparameter into account and uses the uncertainty weighted loss to adjust the weights of three recognition tasks. The experimental results on MNIST and ImageNet show the feasibility and scalability of the proposed framework as well as its effectiveness in dealing with false alarms.