Ge, Jason
Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python
Ge, Jason, Li, Xingguo, Jiang, Haoming, Liu, Han, Zhang, Tong, Wang, Mengdi, Zhao, Tuo
We describe a new library named picasso, which implements a unified framework of pathwise coordinate optimization for a variety of sparse learning problems (e.g., sparse linear regression, sparse logistic regression, sparse Poisson regression and scaled sparse linear regression) combined with efficient active set selection strategies. Besides, the library allows users to choose different sparsity-inducing regularizers, including the convex $\ell_1$, nonconvex MCP and SCAD regularizers. The library is coded in C++ and has user-friendly R and Python wrappers. Numerical experiments demonstrate that picasso can scale up to large problems efficiently.
On Quadratic Convergence of DC Proximal Newton Algorithm for Nonconvex Sparse Learning in High Dimensions
Li, Xingguo, Yang, Lin F., Ge, Jason, Haupt, Jarvis, Zhang, Tong, Zhao, Tuo
We propose a DC proximal Newton algorithm for solving nonconvex regularized sparse learning problems in high dimensions. Our proposed algorithm integrates the proximal Newton algorithm with multi-stage convex relaxation based on the difference of convex (DC) programming, and enjoys both strong computational and statistical guarantees. Specifically, by leveraging a sophisticated characterization of sparse modeling structures/assumptions (i.e., local restricted strong convexity and Hessian smoothness), we prove that within each stage of convex relaxation, our proposed algorithm achieves (local) quadratic convergence, and eventually obtains a sparse approximate local optimum with optimal statistical properties after only a few convex relaxations. Numerical experiments are provided to support our theory.
On Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning
Li, Xingguo, Yang, Lin, Ge, Jason, Haupt, Jarvis, Zhang, Tong, Zhao, Tuo
We propose a DC proximal Newton algorithm for solving nonconvex regularized sparse learning problems in high dimensions. Our proposed algorithm integrates the proximal newton algorithm with multi-stage convex relaxation based on the difference of convex (DC) programming, and enjoys both strong computational and statistical guarantees. Specifically, by leveraging a sophisticated characterization of sparse modeling structures (i.e., local restricted strong convexity and Hessian smoothness), we prove that within each stage of convex relaxation, our proposed algorithm achieves (local) quadratic convergence, and eventually obtains a sparse approximate local optimum with optimal statistical properties after only a few convex relaxations. Numerical experiments are provided to support our theory.