Ge, Huaizhi
When Backdoors Speak: Understanding LLM Backdoor Attacks Through Model-Generated Explanations
Ge, Huaizhi, Li, Yiming, Wang, Qifan, Zhang, Yongfeng, Tang, Ruixiang
Large Language Models (LLMs) are known to be vulnerable to backdoor attacks, where triggers embedded in poisoned samples can maliciously alter LLMs' behaviors. In this paper, we move beyond attacking LLMs and instead examine backdoor attacks through the novel lens of natural language explanations. Specifically, we leverage LLMs' generative capabilities to produce human-readable explanations for their decisions, enabling direct comparisons between explanations for clean and poisoned samples. Our results show that backdoored models produce coherent explanations for clean inputs but diverse and logically flawed explanations for poisoned data, a pattern consistent across classification and generation tasks for different backdoor attacks. Further analysis reveals key insights into the explanation generation process. At the token level, explanation tokens associated with poisoned samples only appear in the final few transformer layers. At the sentence level, attention dynamics indicate that poisoned inputs shift attention away from the original input context during explanation generation. These findings enhance our understanding of backdoor mechanisms in LLMs and present a promising framework for detecting vulnerabilities through explainability.
How Well Can Knowledge Edit Methods Edit Perplexing Knowledge?
Ge, Huaizhi, Rudzicz, Frank, Zhu, Zining
As large language models (LLMs) are widely deployed, targeted editing of their knowledge has become a critical challenge. Recently, advancements in model editing techniques, such as Rank-One Model Editing (ROME), have paved the way for updating LLMs with new knowledge. However, the efficacy of these methods varies across different types of knowledge. This study investigates the capability of knowledge editing methods to incorporate new knowledge with varying degrees of "perplexingness", a term we use to describe the initial difficulty LLMs have in understanding new concepts. We begin by quantifying the "perplexingness" of target knowledge using pre-edit conditional probabilities, and assess the efficacy of edits through post-edit conditional probabilities. Utilizing the widely-used CounterFact dataset, we find significant negative correlations between the "perplexingness" of the new knowledge and the edit efficacy across all 12 scenarios. To dive deeper into this phenomenon, we introduce a novel dataset, HierarchyData, consisting of 99 hyponym-hypernym pairs across diverse categories. Our analysis reveal that more abstract concepts (hypernyms) tend to be more perplexing than their specific counterparts (hyponyms). Further exploration into the influence of knowledge hierarchy on editing outcomes indicates that knowledge positioned at higher hierarchical levels is more challenging to modify in some scenarios. Our research highlights a previously overlooked aspect of LLM editing: the variable efficacy of editing methods in handling perplexing knowledge. By revealing how hierarchical relationships can influence editing outcomes, our findings offer new insights into the challenges of updating LLMs and pave the way for more nuanced approaches to model editing in the future.