Gautam, Sanjana
Blind Spots and Biases: Exploring the Role of Annotator Cognitive Biases in NLP
Gautam, Sanjana, Srinath, Mukund
With the rapid proliferation of artificial intelligence, there is growing concern over its potential to exacerbate existing biases and societal disparities and introduce novel ones. This issue has prompted widespread attention from academia, policymakers, industry, and civil society. While evidence suggests that integrating human perspectives can mitigate bias-related issues in AI systems, it also introduces challenges associated with cognitive biases inherent in human decision-making. Our research focuses on reviewing existing methodologies and ongoing investigations aimed at understanding annotation attributes that contribute to bias.
From Melting Pots to Misrepresentations: Exploring Harms in Generative AI
Gautam, Sanjana, Venkit, Pranav Narayanan, Ghosh, Sourojit
With the widespread adoption of advanced generative models such as Gemini and GPT, there has been a notable increase in the incorporation of such models into sociotechnical systems, categorized under AI-as-a-Service (AIaaS). Despite their versatility across diverse sectors, concerns persist regarding discriminatory tendencies within these models, particularly favoring selected `majority' demographics across various sociodemographic dimensions. Despite widespread calls for diversification of media representations, marginalized racial and ethnic groups continue to face persistent distortion, stereotyping, and neglect within the AIaaS context. In this work, we provide a critical summary of the state of research in the context of social harms to lead the conversation to focus on their implications. We also present open-ended research questions, guided by our discussion, to help define future research pathways.
The Sentiment Problem: A Critical Survey towards Deconstructing Sentiment Analysis
Venkit, Pranav Narayanan, Srinath, Mukund, Gautam, Sanjana, Venkatraman, Saranya, Gupta, Vipul, Passonneau, Rebecca J., Wilson, Shomir
We conduct an inquiry into the sociotechnical aspects of sentiment analysis (SA) by critically examining 189 peer-reviewed papers on their applications, models, and datasets. Our investigation stems from the recognition that SA has become an integral component of diverse sociotechnical systems, exerting influence on both social and technical users. By delving into sociological and technological literature on sentiment, we unveil distinct conceptualizations of this term in domains such as finance, government, and medicine. Our study exposes a lack of explicit definitions and frameworks for characterizing sentiment, resulting in potential challenges and biases. To tackle this issue, we propose an ethics sheet encompassing critical inquiries to guide practitioners in ensuring equitable utilization of SA. Our findings underscore the significance of adopting an interdisciplinary approach to defining sentiment in SA and offer a pragmatic solution for its implementation.
Unmasking Nationality Bias: A Study of Human Perception of Nationalities in AI-Generated Articles
Venkit, Pranav Narayanan, Gautam, Sanjana, Panchanadikar, Ruchi, Huang, Ting-Hao `Kenneth', Wilson, Shomir
We investigate the potential for nationality biases in natural language processing (NLP) models using human evaluation methods. Biased NLP models can perpetuate stereotypes and lead to algorithmic discrimination, posing a significant challenge to the fairness and justice of AI systems. Our study employs a two-step mixed-methods approach that includes both quantitative and qualitative analysis to identify and understand the impact of nationality bias in a text generation model. Through our human-centered quantitative analysis, we measure the extent of nationality bias in articles generated by AI sources. We then conduct open-ended interviews with participants, performing qualitative coding and thematic analysis to understand the implications of these biases on human readers. Our findings reveal that biased NLP models tend to replicate and amplify existing societal biases, which can translate to harm if used in a sociotechnical setting. The qualitative analysis from our interviews offers insights into the experience readers have when encountering such articles, highlighting the potential to shift a reader's perception of a country. These findings emphasize the critical role of public perception in shaping AI's impact on society and the need to correct biases in AI systems.
Nationality Bias in Text Generation
Venkit, Pranav Narayanan, Gautam, Sanjana, Panchanadikar, Ruchi, Huang, Ting-Hao 'Kenneth', Wilson, Shomir
Little attention is placed on analyzing nationality bias in language models, especially when nationality is highly used as a factor in increasing the performance of social NLP models. This paper examines how a text generation model, GPT-2, accentuates pre-existing societal biases about country-based demonyms. We generate stories using GPT-2 for various nationalities and use sensitivity analysis to explore how the number of internet users and the country's economic status impacts the sentiment of the stories. To reduce the propagation of biases through large language models (LLM), we explore the debiasing method of adversarial triggering. Our results show that GPT-2 demonstrates significant bias against countries with lower internet users, and adversarial triggering effectively reduces the same.