Goto

Collaborating Authors

 Gaus, Yona Falinie A.


Dur360BEV: A Real-world 360-degree Single Camera Dataset and Benchmark for Bird-Eye View Mapping in Autonomous Driving

arXiv.org Artificial Intelligence

We present Dur360BEV, a novel spherical camera autonomous driving dataset equipped with a high-resolution 128-channel 3D LiDAR and a RTK-refined GNSS/INS system, along with a benchmark architecture designed to generate Bird-Eye-View (BEV) maps using only a single spherical camera. This dataset and benchmark address the challenges of BEV generation in autonomous driving, particularly by reducing hardware complexity through the use of a single 360-degree camera instead of multiple perspective cameras. Within our benchmark architecture, we propose a novel spherical-image-to-BEV module that leverages spherical imagery and a refined sampling strategy to project features from 2D to 3D. Our approach also includes an innovative application of focal loss, specifically adapted to address the extreme class imbalance often encountered in BEV segmentation tasks, that demonstrates improved segmentation performance on the Dur360BEV dataset. The results show that our benchmark not only simplifies the sensor setup but also achieves competitive performance.


Operationalizing Convolutional Neural Network Architectures for Prohibited Object Detection in X-Ray Imagery

arXiv.org Artificial Intelligence

The recent advancement in deep Convolutional Neural Network (CNN) has brought insight into the automation of X-ray security screening for aviation security and beyond. Here, we explore the viability of two recent end-to-end object detection CNN architectures, Cascade R-CNN and FreeAnchor, for prohibited item detection by balancing processing time and the impact of image data compression from an operational viewpoint. Overall, we achieve maximal detection performance using a FreeAnchor architecture with a ResNet50 backbone, obtaining mean Average Precision (mAP) of 87.7 and 85.8 for using the OPIXray and SIXray benchmark datasets, showing superior performance over prior work on both. With fewer parameters and less training time, FreeAnchor achieves the highest detection inference speed of ~13 fps (3.9 ms per image). Furthermore, we evaluate the impact of lossy image compression upon detector performance. The CNN models display substantial resilience to the lossy compression, resulting in only a 1.1% decrease in mAP at the JPEG compression level of 50. Additionally, a thorough evaluation of data augmentation techniques is provided, including adaptions of MixUp and CutMix strategy as well as other standard transformations, further improving the detection accuracy.