Garrido, Quentin
Intuitive physics understanding emerges from self-supervised pretraining on natural videos
Garrido, Quentin, Ballas, Nicolas, Assran, Mahmoud, Bardes, Adrien, Najman, Laurent, Rabbat, Michael, Dupoux, Emmanuel, LeCun, Yann
We investigate the emergence of intuitive physics understanding in general-purpose deep neural network models trained to predict masked regions in natural videos. Leveraging the violation-of-expectation framework, we find that video prediction models trained to predict outcomes in a learned representation space demonstrate an understanding of various intuitive physics properties, such as object permanence and shape consistency. In contrast, video prediction in pixel space and multimodal large language models, which reason through text, achieve performance closer to chance. Our comparisons of these architectures reveal that jointly learning an abstract representation space while predicting missing parts of sensory input, akin to predictive coding, is sufficient to acquire an understanding of intuitive physics, and that even models trained on one week of unique video achieve above chance performance. This challenges the idea that core knowledge -- a set of innate systems to help understand the world -- needs to be hardwired to develop an understanding of intuitive physics.
An Introduction to Vision-Language Modeling
Bordes, Florian, Pang, Richard Yuanzhe, Ajay, Anurag, Li, Alexander C., Bardes, Adrien, Petryk, Suzanne, Maรฑas, Oscar, Lin, Zhiqiu, Mahmoud, Anas, Jayaraman, Bargav, Ibrahim, Mark, Hall, Melissa, Xiong, Yunyang, Lebensold, Jonathan, Ross, Candace, Jayakumar, Srihari, Guo, Chuan, Bouchacourt, Diane, Al-Tahan, Haider, Padthe, Karthik, Sharma, Vasu, Xu, Hu, Tan, Xiaoqing Ellen, Richards, Megan, Lavoie, Samuel, Astolfi, Pietro, Hemmat, Reyhane Askari, Chen, Jun, Tirumala, Kushal, Assouel, Rim, Moayeri, Mazda, Talattof, Arjang, Chaudhuri, Kamalika, Liu, Zechun, Chen, Xilun, Garrido, Quentin, Ullrich, Karen, Agrawal, Aishwarya, Saenko, Kate, Celikyilmaz, Asli, Chandra, Vikas
Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From having a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
Learning and Leveraging World Models in Visual Representation Learning
Garrido, Quentin, Assran, Mahmoud, Ballas, Nicolas, Bardes, Adrien, Najman, Laurent, LeCun, Yann
Joint-Embedding Predictive Architecture (JEPA) has emerged as a promising self-supervised approach that learns by leveraging a world model. While previously limited to predicting missing parts of an input, we explore how to generalize the JEPA prediction task to a broader set of corruptions. We introduce Image World Models, an approach that goes beyond masked image modeling and learns to predict the effect of global photometric transformations in latent space. We study the recipe of learning performant IWMs and show that it relies on three key aspects: conditioning, prediction difficulty, and capacity. Additionally, we show that the predictive world model learned by IWM can be adapted through finetuning to solve diverse tasks; a fine-tuned IWM world model matches or surpasses the performance of previous self-supervised methods. Finally, we show that learning with an IWM allows one to control the abstraction level of the learned representations, learning invariant representations such as contrastive methods, or equivariant representations such as masked image modelling.
Revisiting Feature Prediction for Learning Visual Representations from Video
Bardes, Adrien, Garrido, Quentin, Ponce, Jean, Chen, Xinlei, Rabbat, Michael, LeCun, Yann, Assran, Mahmoud, Ballas, Nicolas
This paper explores feature prediction as a stand-alone objective for unsupervised learning from video and introduces V-JEPA, a collection of vision models trained solely using a feature prediction objective, without the use of pretrained image encoders, text, negative examples, reconstruction, or other sources of supervision. The models are trained on 2 million videos collected from public datasets and are evaluated on downstream image and video tasks. Our results show that learning by predicting video features leads to versatile visual representations that perform well on both motion and appearance-based tasks, without adaption of the model's parameters; e.g., using a frozen backbone. Our largest model, a ViT-H/16 trained only on videos, obtains 81.9% on Kinetics-400, 72.2% on Something-Something-v2, and 77.9% on ImageNet1K.
Self-Supervised Learning with Lie Symmetries for Partial Differential Equations
Mialon, Grรฉgoire, Garrido, Quentin, Lawrence, Hannah, Rehman, Danyal, LeCun, Yann, Kiani, Bobak T.
Dynamical systems governed by differential equations are ubiquitous in fluid dynamics, chemistry, astrophysics, and beyond. Accurately analyzing and predicting the evolution of such systems is of paramount importance, inspiring decades of innovation in algorithms for numerical methods. However, high-accuracy solvers are often computationally expensive. Machine learning has recently arisen as an alternative method for analyzing differential equations at a fraction of the cost [1, 2, 3]. Typically, the neural network for a given equation is trained on simulations of that same equation, generated by numerical solvers that are high-accuracy but comparatively slow [4]. What if we instead wish to learn from heterogeneous data, e.g., data with missing information, or gathered from actual observation of varied physical systems rather than clean simulations? For example, we may have access to a dataset of instances of time-evolution, stemming from a family of partial differential equations (PDEs) for which important characteristics of the problem, such as viscosity or initial conditions, vary and/or are unknown. In this case, representations learned from such a large, "unlabeled" dataset could still prove useful in learning to identify unknown characteristics, given only a small dataset "labeled" with viscosities or reaction constants. Alternatively, the "unlabeled" dataset may contain evolutions over very short periods of time, or with missing time intervals; possible goals are then to learn representations that could be useful in filling in these gaps, or regressing other quantities of interest.
A Cookbook of Self-Supervised Learning
Balestriero, Randall, Ibrahim, Mark, Sobal, Vlad, Morcos, Ari, Shekhar, Shashank, Goldstein, Tom, Bordes, Florian, Bardes, Adrien, Mialon, Gregoire, Tian, Yuandong, Schwarzschild, Avi, Wilson, Andrew Gordon, Geiping, Jonas, Garrido, Quentin, Fernandez, Pierre, Bar, Amir, Pirsiavash, Hamed, LeCun, Yann, Goldblum, Micah
Self-supervised learning, dubbed the dark matter of intelligence, is a promising path to advance machine learning. Yet, much like cooking, training SSL methods is a delicate art with a high barrier to entry. While many components are familiar, successfully training a SSL method involves a dizzying set of choices from the pretext tasks to training hyper-parameters. Our goal is to lower the barrier to entry into SSL research by laying the foundations and latest SSL recipes in the style of a cookbook. We hope to empower the curious researcher to navigate the terrain of methods, understand the role of the various knobs, and gain the know-how required to explore how delicious SSL can be.
On the duality between contrastive and non-contrastive self-supervised learning
Garrido, Quentin, Chen, Yubei, Bardes, Adrien, Najman, Laurent, Lecun, Yann
Recent approaches in self-supervised learning of image representations can be categorized into different families of methods and, in particular, can be divided into contrastive and non-contrastive approaches. While differences between the two families have been thoroughly discussed to motivate new approaches, we focus more on the theoretical similarities between them. By designing contrastive and covariance based non-contrastive criteria that can be related algebraically and shown to be equivalent under limited assumptions, we show how close those families can be. We further study popular methods and introduce variations of them, allowing us to relate this theoretical result to current practices and show the influence (or lack thereof) of design choices on downstream performance. Motivated by our equivalence result, we investigate the low performance of SimCLR and show how it can match VICReg's with careful hyperparameter tuning, improving significantly over known baselines. We also challenge the popular assumption that non-contrastive methods need large output dimensions. Our theoretical and quantitative results suggest that the numerical gaps between contrastive and non-contrastive methods in certain regimes can be closed given better network design choices and hyperparameter tuning. The evidence shows that unifying different SOTA methods is an important direction to build a better understanding of self-supervised learning.
RankMe: Assessing the downstream performance of pretrained self-supervised representations by their rank
Garrido, Quentin, Balestriero, Randall, Najman, Laurent, Lecun, Yann
Joint-Embedding Self Supervised Learning (JE-SSL) has seen a rapid development, with the emergence of many method variations but only few principled guidelines that would help practitioners to successfully deploy them. The main reason for that pitfall comes from JE-SSL's core principle of not employing any input reconstruction therefore lacking visual cues of unsuccessful training. Adding non informative loss values to that, it becomes difficult to deploy SSL on a new dataset for which no labels can help to judge the quality of the learned representation. In this study, we develop a simple unsupervised criterion that is indicative of the quality of the learned JE-SSL representations: their effective rank. Albeit simple and computationally friendly, this method -- coined RankMe -- allows one to assess the performance of JE-SSL representations, even on different downstream datasets, without requiring any labels. A further benefit of RankMe is that it does not have any training or hyper-parameters to tune. Through thorough empirical experiments involving hundreds of training episodes, we demonstrate how RankMe can be used for hyperparameter selection with nearly no reduction in final performance compared to the current selection method that involve a dataset's labels. We hope that RankMe will facilitate the deployment of JE-SSL towards domains that do not have the opportunity to rely on labels for representations' quality assessment.
Self-supervised learning of Split Invariant Equivariant representations
Garrido, Quentin, Najman, Laurent, Lecun, Yann
Recent progress has been made towards learning invariant or equivariant representations with self-supervised learning. While invariant methods are evaluated on large scale datasets, equivariant ones are evaluated in smaller, more controlled, settings. We aim at bridging the gap between the two in order to learn more diverse representations that are suitable for a wide range of tasks. We start by introducing a dataset called 3DIEBench, consisting of renderings from 3D models over 55 classes and more than 2.5 million images where we have full control on the transformations applied to the objects. We further introduce a predictor architecture based on hypernetworks to learn equivariant representations with no possible collapse to invariance. We introduce SIE (Split Invariant-Equivariant) which combines the hypernetwork-based predictor with representations split in two parts, one invariant, the other equivariant, to learn richer representations. We demonstrate significant performance gains over existing methods on equivariance related tasks from both a qualitative and quantitative point of view. We further analyze our introduced predictor and show how it steers the learned latent space. We hope that both our introduced dataset and approach will enable learning richer representations without supervision in more complex scenarios. Code and data are available at https://github.com/facebookresearch/SIE.
Guillotine Regularization: Why removing layers is needed to improve generalization in Self-Supervised Learning
Bordes, Florian, Balestriero, Randall, Garrido, Quentin, Bardes, Adrien, Vincent, Pascal
One unexpected technique that emerged in recent years consists in training a Deep Network (DN) with a Self-Supervised Learning (SSL) method, and using this network on downstream tasks but with its last few projector layers entirely removed. This trick of throwing away the projector is actually critical for SSL methods to display competitive performances on ImageNet for which more than 30 percentage points can be gained that way. This is a little vexing, as one would hope that the network layer at which invariance is explicitly enforced by the SSL criterion during training (the last projector layer) should be the one to use for best generalization performance downstream. But it seems not to be, and this study sheds some light on why. This trick, which we name Guillotine Regularization (GR), is in fact a generically applicable method that has been used to improve generalization performance in transfer learning scenarios. In this work, we identify the underlying reasons behind its success and show that the optimal layer to use might change significantly depending on the training setup, the data or the downstream task. Lastly, we give some insights on how to reduce the need for a projector in SSL by aligning the pretext SSL task and the downstream task.