Goto

Collaborating Authors

 Garibay, Ozlem


Predicting Through Generation: Why Generation Is Better for Prediction

arXiv.org Artificial Intelligence

This paper argues that generating output tokens is more effective than using pooled representations for prediction tasks because token-level generation retains more mutual information. Since LLMs are trained on massive text corpora using next-token prediction, generation aligns naturally with their learned behavior. Using the Data Processing Inequality (DPI), we provide both theoretical and empirical evidence supporting this claim. However, autoregressive models face two key challenges when used for prediction: (1) exposure bias, where the model sees ground truth tokens during training but relies on its own predictions during inference, leading to errors, and (2) format mismatch, where discrete tokens do not always align with the tasks required output structure. To address these challenges, we introduce PredGen(Predicting Through Generating), an end to end framework that (i) uses scheduled sampling to reduce exposure bias, and (ii) introduces a task adapter to convert the generated tokens into structured outputs. Additionally, we introduce Writer-Director Alignment Loss (WDAL), which ensures consistency between token generation and final task predictions, improving both text coherence and numerical accuracy. We evaluate PredGen on multiple classification and regression benchmarks. Our results show that PredGen consistently outperforms standard baselines, demonstrating its effectiveness in structured prediction tasks.


User Profile with Large Language Models: Construction, Updating, and Benchmarking

arXiv.org Artificial Intelligence

User profile modeling plays a key role in personalized systems, as it requires building accurate profiles and updating them with new information. In this paper, we present two high-quality open-source user profile datasets: one for profile construction and another for profile updating. These datasets offer a strong basis for evaluating user profile modeling techniques in dynamic settings. We also show a methodology that uses large language models (LLMs) to tackle both profile construction and updating. Our method uses a probabilistic framework to predict user profiles from input text, allowing for precise and context-aware profile generation. Our experiments demonstrate that models like Mistral-7b and Llama2-7b perform strongly in both tasks. LLMs improve the precision and recall of the generated profiles, and high evaluation scores confirm the effectiveness of our approach.