Goto

Collaborating Authors

 Garg, Kartik


Renewable Energy Transition in South America: Predictive Analysis of Generation Capacity by 2050

arXiv.org Artificial Intelligence

In this research, renewable energy expansion in South America up to 2050 is predicted based on machine learning models that are trained on past energy data. The research employs gradient boosting regression and Prophet time series forecasting to make predictions of future generation capacities for solar, wind, hydroelectric, geothermal, biomass, and other renewable sources in South American nations. Model output analysis indicates staggering future expansion in the generation of renewable energy, with solar and wind energy registering the highest expansion rates. Geospatial visualization methods were applied to illustrate regional disparities in the utilization of renewable energy. The results forecast South America to record nearly 3-fold growth in the generation of renewable energy by the year 2050, with Brazil and Chile spearheading regional development. Such projections help design energy policy, investment strategy, and climate change mitigation throughout the region, in helping the developing economies to transition to sustainable energy.


Revisit Anything: Visual Place Recognition via Image Segment Retrieval

arXiv.org Artificial Intelligence

Accurately recognizing a revisited place is crucial for embodied agents to localize and navigate. This requires visual representations to be distinct, despite strong variations in camera viewpoint and scene appearance. Existing visual place recognition pipelines encode the "whole" image and search for matches. This poses a fundamental challenge in matching two images of the same place captured from different camera viewpoints: "the similarity of what overlaps can be dominated by the dissimilarity of what does not overlap". We address this by encoding and searching for "image segments" instead of the whole images. We propose to use open-set image segmentation to decompose an image into `meaningful' entities (i.e., things and stuff). This enables us to create a novel image representation as a collection of multiple overlapping subgraphs connecting a segment with its neighboring segments, dubbed SuperSegment. Furthermore, to efficiently encode these SuperSegments into compact vector representations, we propose a novel factorized representation of feature aggregation. We show that retrieving these partial representations leads to significantly higher recognition recall than the typical whole image based retrieval. Our segments-based approach, dubbed SegVLAD, sets a new state-of-the-art in place recognition on a diverse selection of benchmark datasets, while being applicable to both generic and task-specialized image encoders. Finally, we demonstrate the potential of our method to ``revisit anything'' by evaluating our method on an object instance retrieval task, which bridges the two disparate areas of research: visual place recognition and object-goal navigation, through their common aim of recognizing goal objects specific to a place. Source code: https://github.com/AnyLoc/Revisit-Anything.