Garg, Deepeka
Simulate and Optimise: A two-layer mortgage simulator for designing novel mortgage assistance products
Ardon, Leo, Evans, Benjamin Patrick, Garg, Deepeka, Narayanan, Annapoorani Lakshmi, Henry-Nickie, Makada, Ganesh, Sumitra
We develop a novel two-layer approach for optimising mortgage relief products through a simulated multi-agent mortgage environment. While the approach is generic, here the environment is calibrated to the US mortgage market based on publicly available census data and regulatory guidelines. Through the simulation layer, we assess the resilience of households to exogenous income shocks, while the optimisation layer explores strategies to improve the robustness of households to these shocks by making novel mortgage assistance products available to households. Households in the simulation are adaptive, learning to make mortgage-related decisions (such as product enrolment or strategic foreclosures) that maximize their utility, balancing their available liquidity and equity. We show how this novel two-layer simulation approach can successfully design novel mortgage assistance products to improve household resilience to exogenous shocks, and balance the costs of providing such products through post-hoc analysis. Previously, such analysis could only be conducted through expensive pilot studies involving real participants, demonstrating the benefit of the approach for designing and evaluating financial products.
A Heterogeneous Agent Model of Mortgage Servicing: An Income-based Relief Analysis
Garg, Deepeka, Evans, Benjamin Patrick, Ardon, Leo, Narayanan, Annapoorani Lakshmi, Vann, Jared, Madhushani, Udari, Henry-Nickie, Makada, Ganesh, Sumitra
Mortgages account for the largest portion of household debt in the United States, totaling around \$12 trillion nationwide. In times of financial hardship, alleviating mortgage burdens is essential for supporting affected households. The mortgage servicing industry plays a vital role in offering this assistance, yet there has been limited research modelling the complex relationship between households and servicers. To bridge this gap, we developed an agent-based model that explores household behavior and the effectiveness of relief measures during financial distress. Our model represents households as adaptive learning agents with realistic financial attributes. These households experience exogenous income shocks, which may influence their ability to make mortgage payments. Mortgage servicers provide relief options to these households, who then choose the most suitable relief based on their unique financial circumstances and individual preferences. We analyze the impact of various external shocks and the success of different mortgage relief strategies on specific borrower subgroups. Through this analysis, we show that our model can not only replicate real-world mortgage studies but also act as a tool for conducting a broad range of what-if scenario analyses. Our approach offers fine-grained insights that can inform the development of more effective and inclusive mortgage relief solutions.
O3D: Offline Data-driven Discovery and Distillation for Sequential Decision-Making with Large Language Models
Xiao, Yuchen, Sun, Yanchao, Xu, Mengda, Madhushani, Udari, Vann, Jared, Garg, Deepeka, Ganesh, Sumitra
Recent advancements in large language models (LLMs) have exhibited promising performance in solving sequential decision-making problems. By imitating few-shot examples provided in the prompts (i.e., in-context learning), an LLM agent can interact with an external environment and complete given tasks without additional training. However, such few-shot examples are often insufficient to generate high-quality solutions for complex and long-horizon tasks, while the limited context length cannot consume larger-scale demonstrations with long interaction horizons. To this end, we propose an offline learning framework that utilizes offline data at scale (e.g, logs of human interactions) to improve LLM-powered policies without finetuning. The proposed method O3D (Offline Data-driven Discovery and Distillation) automatically discovers reusable skills and distills generalizable knowledge across multiple tasks based on offline interaction data, advancing the capability of solving downstream tasks. Empirical results under two interactive decision-making benchmarks (ALFWorld and WebShop) verify that O3D can notably enhance the decision-making capabilities of LLMs through the offline discovery and distillation process, and consistently outperform baselines across various LLMs.
Phantom -- A RL-driven multi-agent framework to model complex systems
Ardon, Leo, Vann, Jared, Garg, Deepeka, Spooner, Tom, Ganesh, Sumitra
Agent based modelling (ABM) is a computational approach to modelling complex systems by specifying the behaviour of autonomous decision-making components or agents in the system and allowing the system dynamics to emerge from their interactions. Recent advances in the field of Multi-agent reinforcement learning (MARL) have made it feasible to study the equilibrium of complex environments where multiple agents learn simultaneously. However, most ABM frameworks are not RL-native, in that they do not offer concepts and interfaces that are compatible with the use of MARL to learn agent behaviours. In this paper, we introduce a new open-source framework, Phantom, to bridge the gap between ABM and MARL. Phantom is an RL-driven framework for agent-based modelling of complex multi-agent systems including, but not limited to economic systems and markets. The framework aims to provide the tools to simplify the ABM specification in a MARL-compatible way - including features to encode dynamic partial observability, agent utility functions, heterogeneity in agent preferences or types, and constraints on the order in which agents can act (e.g. Stackelberg games, or more complex turn-taking environments). In this paper, we present these features, their design rationale and present two new environments leveraging the framework.