Garcia, Alexandre
From the Token to the Review: A Hierarchical Multimodal approach to Opinion Mining
Garcia, Alexandre, Colombo, Pierre, Essid, Slim, d'Alché-Buc, Florence, Clavel, Chloé
The task of predicting fine grained user opinion based on spontaneous spoken language is a key problem arising in the development of Computational Agents as well as in the development of social network based opinion miners. Unfortunately, gathering reliable data on which a model can be trained is notoriously difficult and existing works rely only on coarsely labeled opinions. In this work we aim at bridging the gap separating fine grained opinion models already developed for written language and coarse grained models developed for spontaneous multimodal opinion mining. We take advantage of the implicit hierarchical structure of opinions to build a joint fine and coarse grained opinion model that exploits different views of the opinion expression. The resulting model shares some properties with attention-based models and is shown to provide competitive results on a recently released multimodal fine grained annotated corpus.
A Structured Prediction Approach for Label Ranking
Korba, Anna, Garcia, Alexandre, d', Alché-Buc, Florence
We propose to solve a label ranking problem as a structured output regression task. In this view, we adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: a regression step in a well-chosen feature space and a pre-image (or decoding) step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. Their extension to the case of incomplete or partial rankings is also discussed. Finally, we provide empirical results on synthetic and real-world datasets showing the relevance of our method.
A Structured Prediction Approach for Label Ranking
Korba, Anna, Garcia, Alexandre, d', Alché-Buc, Florence
We propose to solve a label ranking problem as a structured output regression task. In this view, we adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: a regression step in a well-chosen feature space and a pre-image (or decoding) step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. Their extension to the case of incomplete or partial rankings is also discussed. Finally, we provide empirical results on synthetic and real-world datasets showing the relevance of our method.
Computer-Assisted Fraud Detection, From Active Learning to Reward Maximization
Marfaing, Christelle, Garcia, Alexandre
The automatic detection of frauds in banking transactions has been recently studied as a way to help the analysts finding fraudulent operations. Due to the availability of a human feedback, this task has been studied in the framework of active learning: the fraud predictor is allowed to sequentially call on an oracle. This human intervention is used to label new examples and improve the classification accuracy of the latter. Such a setting is not adapted in the case of fraud detection with financial data in European countries. Actually, as a human verification is mandatory to consider a fraud as really detected, it is not necessary to focus on improving the classifier. We introduce the setting of 'Computer-assisted fraud detection' where the goal is to minimize the number of non fraudulent operations submitted to an oracle. The existing methods are applied to this task and we show that a simple meta-algorithm provides competitive results in this scenario on benchmark datasets.
A Structured Prediction Approach for Label Ranking
Korba, Anna, Garcia, Alexandre, Buc, Florence d'Alché
We propose to solve a label ranking problem as a structured output regression task. We adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: the regression step in a well-chosen feature space and the pre-image step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. We also propose their natural extension to the case of partial rankings and prove their efficiency on real-world datasets.
Structured Output Learning with Abstention: Application to Accurate Opinion Prediction
Garcia, Alexandre, Essid, Slim, Clavel, Chloé, d'Alché-Buc, Florence
Motivated by Supervised Opinion Analysis, we propose a novel framework devoted to Structured Output Learning with Abstention (SOLA). The structure prediction model is able to abstain from predicting some labels in the structured output at a cost chosen by the user in a flexible way. For that purpose, we decompose the problem into the learning of a pair of predictors, one devoted to structured abstention and the other, to structured output prediction. To compare fully labeled training data with predictions potentially containing abstentions, we define a wide class of asymmetric abstention-aware losses. Learning is achieved by surrogate regression in an appropriate feature space while prediction with abstention is performed by solving a new pre-image problem. Thus, SOLA extends recent ideas about Structured Output Prediction via surrogate problems and calibration theory and enjoys statistical guarantees on the resulting excess risk. Instantiated on a hierarchical abstention-aware loss, SOLA is shown to be relevant for fine-grained opinion mining and gives state-of-the-art results on this task. Moreover, the abstention-aware representations can be used to competitively predict user-review ratings based on a sentence-level opinion predictor.