Goto

Collaborating Authors

 Gao, Zhifu


InspireMusic: Integrating Super Resolution and Large Language Model for High-Fidelity Long-Form Music Generation

arXiv.org Artificial Intelligence

We introduce InspireMusic, a framework integrated super resolution and large language model for high-fidelity long-form music generation. A unified framework generates high-fidelity music, songs, and audio, which incorporates an autoregressive transformer with a super-resolution flow-matching model. This framework enables the controllable generation of high-fidelity long-form music at a higher sampling rate from both text and audio prompts. Our model differs from previous approaches, as we utilize an audio tokenizer with one codebook that contains richer semantic information, thereby reducing training costs and enhancing efficiency. This combination enables us to achieve high-quality audio generation with long-form coherence of up to $8$ minutes. Then, an autoregressive transformer model based on Qwen 2.5 predicts audio tokens. Next, we employ a super-resolution flow-matching model to generate high-sampling rate audio with fine-grained details learned from an acoustic codec model. Comprehensive experiments show that the InspireMusic-1.5B-Long model has a comparable performance to recent top-tier open-source systems, including MusicGen and Stable Audio 2.0, on subjective and objective evaluations. The code and pre-trained models are released at https://github.com/FunAudioLLM/InspireMusic.


MinMo: A Multimodal Large Language Model for Seamless Voice Interaction

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence lengths and insufficient pre-training. Aligned models maintain text LLM capabilities but are often limited by small datasets and a narrow focus on speech tasks. In this work, we introduce MinMo, a Multimodal Large Language Model with approximately 8B parameters for seamless voice interaction. We address the main limitations of prior aligned multimodal models. We train MinMo through multiple stages of speech-to-text alignment, text-to-speech alignment, speech-to-speech alignment, and duplex interaction alignment, on 1.4 million hours of diverse speech data and a broad range of speech tasks. After the multi-stage training, MinMo achieves state-of-the-art performance across various benchmarks for voice comprehension and generation while maintaining the capabilities of text LLMs, and also facilitates full-duplex conversation, that is, simultaneous two-way communication between the user and the system. Moreover, we propose a novel and simple voice decoder that outperforms prior models in voice generation. The enhanced instruction-following capabilities of MinMo supports controlling speech generation based on user instructions, with various nuances including emotions, dialects, and speaking rates, and mimicking specific voices. For MinMo, the speech-to-text latency is approximately 100ms, full-duplex latency is approximately 600ms in theory and 800ms in practice. The MinMo project web page is https://funaudiollm.github.io/minmo, and the code and models will be released soon.


CosyVoice 2: Scalable Streaming Speech Synthesis with Large Language Models

arXiv.org Artificial Intelligence

In our previous work, we introduced CosyVoice, a multilingual speech synthesis model based on supervised discrete speech tokens. By employing progressive semantic decoding with two popular generative models, language models (LMs) and Flow Matching, CosyVoice demonstrated high prosody naturalness, content consistency, and speaker similarity in speech in-context learning. Recently, significant progress has been made in multi-modal large language models (LLMs), where the response latency and real-time factor of speech synthesis play a crucial role in the interactive experience. Therefore, in this report, we present an improved streaming speech synthesis model, CosyVoice 2, which incorporates comprehensive and systematic optimizations. Specifically, we introduce finite-scalar quantization to improve the codebook utilization of speech tokens. For the text-speech LM, we streamline the model architecture to allow direct use of a pre-trained LLM as the backbone. In addition, we develop a chunk-aware causal flow matching model to support various synthesis scenarios, enabling both streaming and non-streaming synthesis within a single model. By training on a large-scale multilingual dataset, CosyVoice 2 achieves human-parity naturalness, minimal response latency, and virtually lossless synthesis quality in the streaming mode.


CTC-Assisted LLM-Based Contextual ASR

arXiv.org Artificial Intelligence

Contextual ASR or hotword customization holds substantial practical value. Despite the impressive performance of current end-to-end (E2E) automatic speech recognition (ASR) systems, they often face challenges in accurately recognizing rare words. Typical E2E contextual ASR models commonly feature complex architectures and decoding mechanisms, limited in performance and susceptible to interference from distractor words. With large language model (LLM)-based ASR models emerging as the new mainstream, we propose a CTC-Assisted LLM-Based Contextual ASR model with an efficient filtering algorithm. By using coarse CTC decoding results to filter potential relevant hotwords and incorporating them into LLM prompt input, our model attains WER/B-WER of 1.27%/3.67% and 2.72%/8.02% on the Librispeech test-clean and test-other sets targeting on recognizing rare long-tail words, demonstrating significant improvements compared to the baseline LLM-based ASR model, and substantially surpassing other related work. More remarkably, with the help of the large language model and proposed filtering algorithm, our contextual ASR model still performs well with 2000 biasing words.


Enhancing Low-Resource ASR through Versatile TTS: Bridging the Data Gap

arXiv.org Artificial Intelligence

While automatic speech recognition (ASR) systems have achieved remarkable performance with large-scale datasets, their efficacy remains inadequate in low-resource settings, encompassing dialects, accents, minority languages, and long-tail hotwords, domains with significant practical relevance. With the advent of versatile and powerful text-to-speech (TTS) models, capable of generating speech with human-level naturalness, expressiveness, and diverse speaker profiles, leveraging TTS for ASR data augmentation provides a cost-effective and practical approach to enhancing ASR performance. Comprehensive experiments on an unprecedentedly rich variety of low-resource datasets demonstrate consistent and substantial performance improvements, proving that the proposed method of enhancing low-resource ASR through a versatile TTS model is highly effective and has broad application prospects. Furthermore, we delve deeper into key characteristics of synthesized speech data that contribute to ASR improvement, examining factors such as text diversity, speaker diversity, and the volume of synthesized data, with text diversity being studied for the first time in this work. We hope our findings provide helpful guidance and reference for the practical application of TTS-based data augmentation and push the advancement of low-resource ASR one step further.


FunAudioLLM: Voice Understanding and Generation Foundation Models for Natural Interaction Between Humans and LLMs

arXiv.org Artificial Intelligence

This report introduces FunAudioLLM, a model family designed to enhance natural voice interactions between humans and large language models (LLMs). At its core are two innovative models: SenseVoice, which handles multilingual speech recognition, emotion recognition, and audio event detection; and CosyVoice, which facilitates natural speech generation with control over multiple languages, timbre, speaking style, and speaker identity. SenseVoice-Small delivers exceptionally low-latency ASR for 5 languages, and SenseVoice-Large supports high-precision ASR for over 50 languages, while CosyVoice excels in multi-lingual voice generation, zero-shot in-context learning, cross-lingual voice cloning, and instruction-following capabilities. The models related to SenseVoice and CosyVoice have been open-sourced on Modelscope and Huggingface, along with the corresponding training, inference, and fine-tuning codes released on GitHub. By integrating these models with LLMs, FunAudioLLM enables applications such as speech-to-speech translation, emotional voice chat, interactive podcasts, and expressive audiobook narration, thereby pushing the boundaries of voice interaction technology. Demos are available at https://fun-audio-llm.github.io, and the code can be accessed at https://github.com/FunAudioLLM.


CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens

arXiv.org Artificial Intelligence

Recent years have witnessed a trend that large language model (LLM) based text-to-speech (TTS) emerges into the mainstream due to their high naturalness and zero-shot capacity. In this paradigm, speech signals are discretized into token sequences, which are modeled by an LLM with text as prompts and reconstructed by a token-based vocoder to waveforms. Obviously, speech tokens play a critical role in LLM-based TTS models. Current speech tokens are learned in an unsupervised manner, which lacks explicit semantic information and alignment to the text. In this paper, we propose to represent speech with supervised semantic tokens, which are derived from a multilingual speech recognition model by inserting vector quantization into the encoder. Based on the tokens, we further propose a scalable zero-shot TTS synthesizer, CosyVoice, which consists of an LLM for text-to-token generation and a conditional flow matching model for token-to-speech synthesis. Experimental results show that supervised semantic tokens significantly outperform existing unsupervised tokens in terms of content consistency and speaker similarity for zero-shot voice cloning. Moreover, we find that utilizing large-scale data further improves the synthesis performance, indicating the scalable capacity of CosyVoice. To the best of our knowledge, this is the first attempt to involve supervised speech tokens into TTS models.


MaLa-ASR: Multimedia-Assisted LLM-Based ASR

arXiv.org Artificial Intelligence

As more and more information-rich data like video become available, utilizing multi-modal auxiliary information to enhance audio tasks has sparked widespread research interest. The recent surge in research on LLM-based audio models provides fresh perspectives for tackling audio tasks. Given that LLM can flexibly ingest multiple inputs, we propose MaLa-ASR, an LLM-based ASR model that can integrate textual keywords extracted from presentation slides to improve recognition of conference content. MaLa-ASR yields average WERs of 9.4% and 11.7% on the L95 and S95 subsets of the SlideSpeech corpus, representing a significant relative WER drop of 27.9% and 44.7% over the baseline model reported in SlideSpeech. MaLa-ASR underscores LLM's strong performance in speech tasks and the capability to integrate auxiliary information conveniently. By adding keywords to the input prompt, the biased word error rate (B-WER) reduces relatively by 46.0% and 44.2%, establishing a new SOTA on this dataset.


An Embarrassingly Simple Approach for LLM with Strong ASR Capacity

arXiv.org Artificial Intelligence

In this paper, we focus on solving one of the most important tasks in the field of speech processing, i.e., automatic speech recognition (ASR), with speech foundation encoders and large language models (LLM). Recent works have complex designs such as compressing the output temporally for the speech encoder, tackling modal alignment for the projector, and utilizing parameter-efficient fine-tuning for the LLM. We found that delicate designs are not necessary, while an embarrassingly simple composition of off-the-shelf speech encoder, LLM, and the only trainable linear projector is competent for the ASR task. To be more specific, we benchmark and explore various combinations of LLMs and speech encoders, leading to the optimal LLM-based ASR system, which we call SLAM-ASR. The proposed SLAM-ASR provides a clean setup and little task-specific design, where only the linear projector is trained. To the best of our knowledge, SLAM-ASR achieves the best performance on the Librispeech benchmark among LLM-based ASR models and even outperforms the latest LLM-based audio-universal model trained on massive pair data. Finally, we explore the capability emergence of LLM-based ASR in the process of modal alignment. We hope that our study can facilitate the research on extending LLM with cross-modality capacity and shed light on the LLM-based ASR community.


SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability

arXiv.org Artificial Intelligence

Hotword customization is one of the concerned issues remained in ASR field - it is of value to enable users of ASR systems to customize names of entities, persons and other phrases to obtain better experience. The past few years have seen effective modeling strategies for ASR contextualization developed, but they still exhibit space for improvement about training stability and the invisible activation process. In this paper we propose Semantic-Augmented Contextual-Paraformer (SeACo-Paraformer) a novel NAR based ASR system with flexible and effective hotword customization ability. It possesses the advantages of AED-based model's accuracy, NAR model's efficiency, and explicit customization capacity of superior performance. Through extensive experiments with 50,000 hours of industrial big data, our proposed model outperforms strong baselines in customization. Besides, we explore an efficient way to filter large-scale incoming hotwords for further improvement. The industrial models compared, source codes and two hotword test sets are all open source.