Gao, Yuan
Conditional Independence Test Based on Transport Maps
He, Chenxuan, Gao, Yuan, Zhu, Liping, Huang, Jian
Testing conditional independence between two random vectors given a third is a fundamental and challenging problem in statistics, particularly in multivariate nonparametric settings due to the complexity of conditional structures. We propose a novel framework for testing conditional independence using transport maps. At the population level, we show that two well-defined transport maps can transform the conditional independence test into an unconditional independence test, this substantially simplifies the problem. These transport maps are estimated from data using conditional continuous normalizing flow models. Within this framework, we derive a test statistic and prove its consistency under both the null and alternative hypotheses. A permutation-based procedure is employed to evaluate the significance of the test. We validate the proposed method through extensive simulations and real-data analysis. Our numerical studies demonstrate the practical effectiveness of the proposed method for conditional independence testing.
ATOM: A Framework of Detecting Query-Based Model Extraction Attacks for Graph Neural Networks
Cheng, Zhan, Shen, Bolin, Sha, Tianming, Gao, Yuan, Li, Shibo, Dong, Yushun
Graph Neural Networks (GNNs) have gained traction in Graph-based Machine Learning as a Service (GMLaaS) platforms, yet they remain vulnerable to graph-based model extraction attacks (MEAs), where adversaries reconstruct surrogate models by querying the victim model. Existing defense mechanisms, such as watermarking and fingerprinting, suffer from poor real-time performance, susceptibility to evasion, or reliance on post-attack verification, making them inadequate for handling the dynamic characteristics of graph-based MEA variants. To address these limitations, we propose ATOM, a novel real-time MEA detection framework tailored for GNNs. ATOM integrates sequential modeling and reinforcement learning to dynamically detect evolving attack patterns, while leveraging $k$-core embedding to capture the structural properties, enhancing detection precision. Furthermore, we provide theoretical analysis to characterize query behaviors and optimize detection strategies. Extensive experiments on multiple real-world datasets demonstrate that ATOM outperforms existing approaches in detection performance, maintaining stable across different time steps, thereby offering a more effective defense mechanism for GMLaaS environments.
Accelerated Distributed Optimization with Compression and Error Feedback
Gao, Yuan, Rodomanov, Anton, Rack, Jeremy, Stich, Sebastian U.
Modern machine learning tasks often involve massive datasets and models, necessitating distributed optimization algorithms with reduced communication overhead. Communication compression, where clients transmit compressed updates to a central server, has emerged as a key technique to mitigate communication bottlenecks. However, the theoretical understanding of stochastic distributed optimization with contractive compression remains limited, particularly in conjunction with Nesterov acceleration -- a cornerstone for achieving faster convergence in optimization. In this paper, we propose a novel algorithm, ADEF (Accelerated Distributed Error Feedback), which integrates Nesterov acceleration, contractive compression, error feedback, and gradient difference compression. We prove that ADEF achieves the first accelerated convergence rate for stochastic distributed optimization with contractive compression in the general convex regime. Numerical experiments validate our theoretical findings and demonstrate the practical efficacy of ADEF in reducing communication costs while maintaining fast convergence.
X2CT-CLIP: Enable Multi-Abnormality Detection in Computed Tomography from Chest Radiography via Tri-Modal Contrastive Learning
You, Jianzhong, Gao, Yuan, Kim, Sangwook, Mcintosh, Chris
Computed tomography (CT) is a key imaging modality for diagnosis, yet its clinical utility is marred by high radiation exposure and long turnaround times, restricting its use for larger-scale screening. Although chest radiography (CXR) is more accessible and safer, existing CXR foundation models focus primarily on detecting diseases that are readily visible on the CXR. Recently, works have explored training disease classification models on simulated CXRs, but they remain limited to recognizing a single disease type from CT. CT foundation models have also emerged with significantly improved detection of pathologies in CT. However, the generalized application of CT-derived labels on CXR has remained illusive. In this study, we propose X2CT-CLIP, a tri-modal knowledge transfer learning framework that bridges the modality gap between CT and CXR while reducing the computational burden of model training. Our approach is the first work to enable multi-abnormality classification in CT, using CXR, by transferring knowledge from 3D CT volumes and associated radiology reports to a CXR encoder via a carefully designed tri-modal alignment mechanism in latent space. Extensive evaluations on three multi-label CT datasets demonstrate that our method outperforms state-of-the-art baselines in cross-modal retrieval, few-shot adaptation, and external validation. These results highlight the potential of CXR, enriched with knowledge derived from CT, as a viable efficient alternative for disease detection in resource-limited settings.
BeamVQ: Beam Search with Vector Quantization to Mitigate Data Scarcity in Physical Spatiotemporal Forecasting
Wang, Weiyan, Shi, Xingjian, Shu, Ruiqi, Gao, Yuan, Chen, Rui Ray, Wang, Kun, Xu, Fan, Xue, Jinbao, Li, Shuaipeng, Tao, Yangyu, Wang, Di, Wu, Hao, Huang, Xiaomeng
In practice, physical spatiotemporal forecasting can suffer from data scarcity, because collecting large-scale data is non-trivial, especially for extreme events. Hence, we propose \method{}, a novel probabilistic framework to realize iterative self-training with new self-ensemble strategies, achieving better physical consistency and generalization on extreme events. Following any base forecasting model, we can encode its deterministic outputs into a latent space and retrieve multiple codebook entries to generate probabilistic outputs. Then BeamVQ extends the beam search from discrete spaces to the continuous state spaces in this field. We can further employ domain-specific metrics (e.g., Critical Success Index for extreme events) to filter out the top-k candidates and develop the new self-ensemble strategy by combining the high-quality candidates. The self-ensemble can not only improve the inference quality and robustness but also iteratively augment the training datasets during continuous self-training. Consequently, BeamVQ realizes the exploration of rare but critical phenomena beyond the original dataset. Comprehensive experiments on different benchmarks and backbones show that BeamVQ consistently reduces forecasting MSE (up to 39%), enhancing extreme events detection and proving its effectiveness in handling data scarcity.
A MIMO Wireless Channel Foundation Model via CIR-CSI Consistency
Jiang, Jun, Yu, Wenjun, Li, Yunfan, Gao, Yuan, Xu, Shugong
In the field of artificial intelligence, self-supervised learning has demonstrated superior generalization capabilities by leveraging large-scale unlabeled datasets for pretraining, which is especially critical for wireless communication models to adapt to a variety of scenarios. This paper innovatively treats Channel State Information (CSI) and Channel Impulse Response (CIR) as naturally aligned multi-modal data and proposes the first MIMO wireless channel foundation model, named CSI-CLIP. By effectively capturing the joint representations of both CIR and CSI, CSI-CLIP exhibits remarkable adaptability across scenarios and robust feature extraction capabilities. Experimental results show that in positioning task, CSI-CLIP reduces the mean error distance by 22%; in beam management task, it increases accuracy by 1% compared to traditional supervised methods, as well as in the channel identification task. These improvements not only highlight the potential and value of CSI-CLIP in integrating sensing and communication but also demonstrate its significant advantages over existing techniques. Moreover, viewing CSI and CIR as multi-modal pairs and contrastive learning for wireless channel foundation model open up new research directions in the domain of MIMO wireless communications.
Risk-Aware Driving Scenario Analysis with Large Language Models
Gao, Yuan, Piccinini, Mattia, Betz, Johannes
Large Language Models (LLMs) can capture nuanced contextual relationships, reasoning, and complex problem-solving. By leveraging their ability to process and interpret large-scale information, LLMs have shown potential to address domain-specific challenges, including those in autonomous driving systems. This paper proposes a novel framework that leverages LLMs for risk-aware analysis of generated driving scenarios. We hypothesize that LLMs can effectively evaluate whether driving scenarios generated by autonomous driving testing simulators are safety-critical. To validate this hypothesis, we conducted an empirical evaluation to assess the effectiveness of LLMs in performing this task. This framework will also provide feedback to generate the new safety-critical scenario by using adversarial method to modify existing non-critical scenarios and test their effectiveness in validating motion planning algorithms. Code and scenarios are available at: https://github.com/yuangao-tum/Riskaware-Scenario-analyse
OneForecast: A Universal Framework for Global and Regional Weather Forecasting
Gao, Yuan, Wu, Hao, Shu, Ruiqi, Dong, Huanshuo, Xu, Fan, Chen, Rui, Yan, Yibo, Wen, Qingsong, Hu, Xuming, Wang, Kun, Wu, Jiahao, Li, Qing, Xiong, Hui, Huang, Xiaomeng
Accurate weather forecasts are important for disaster prevention, agricultural planning, and water resource management. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accuracy predictions but are computationally expensive and fail to fully leverage rapidly growing historical data. In recent years, deep learning methods have made significant progress in weather forecasting, but challenges remain, such as balancing global and regional high-resolution forecasts, excessive smoothing in extreme event predictions, and insufficient dynamic system modeling. To address these issues, this paper proposes a global-regional nested weather forecasting framework based on graph neural networks (GNNs). By combining a dynamic system perspective with multi-grid theory, we construct a multi-scale graph structure and densify the target region to capture local high-frequency features. We introduce an adaptive information propagation mechanism, using dynamic gating units to deeply integrate node and edge features for more accurate extreme event forecasting. For high-resolution regional forecasts, we propose a neural nested grid method to mitigate boundary information loss. Experimental results show that the proposed method performs excellently across global to regional scales and short-term to long-term forecasts, especially in extreme event predictions (e.g., typhoons), significantly improving forecast accuracy. Our codes are available at https://github.com/YuanGao-YG/OneForecast.
AI-driven Wireless Positioning: Fundamentals, Standards, State-of-the-art, and Challenges
Pan, Guangjin, Gao, Yuan, Gao, Yilin, Zhong, Zhiyong, Yang, Xiaoyu, Guo, Xinyu, Xu, Shugong
Wireless positioning technologies hold significant value for applications in autonomous driving, extended reality (XR), unmanned aerial vehicles (UAVs), and more. With the advancement of artificial intelligence (AI), leveraging AI to enhance positioning accuracy and robustness has emerged as a field full of potential. Driven by the requirements and functionalities defined in the 3rd Generation Partnership Project (3GPP) standards, AI/machine learning (ML)-based positioning is becoming a key technology to overcome the limitations of traditional methods. This paper begins with an introduction to the fundamentals of AI and wireless positioning, covering AI models, algorithms, positioning applications, emerging wireless technologies, and the basics of positioning techniques. Subsequently, focusing on standardization progress, we provide a comprehensive review of the evolution of 3GPP positioning standards, with an emphasis on the integration of AI/ML technologies in recent and upcoming releases. Based on the AI/ML-assisted positioning and direct AI/ML positioning schemes outlined in the standards, we conduct an in-depth investigation of related research. we focus on state-of-the-art (SOTA) research in AI-based line-of-sight (LOS)/non-line-of-sight (NLOS) detection, time of arrival (TOA)/time difference of arrival (TDOA) estimation, and angle estimation techniques. For Direct AI/ML Positioning, we explore SOTA advancements in fingerprint-based positioning, knowledge-assisted AI positioning, and channel charting-based positioning. Furthermore, we introduce publicly available datasets for wireless positioning and conclude by summarizing the challenges and opportunities of AI-driven wireless positioning.
Reach Measurement, Optimization and Frequency Capping In Targeted Online Advertising Under k-Anonymity
Gao, Yuan, Qiao, Mu
The growth in the use of online advertising to foster brand awareness over recent years is largely attributable to the ubiquity of social media. One pivotal technology contributing to the success of online brand advertising is frequency capping, a mechanism that enables marketers to control the number of times an ad is shown to a specific user. However, the very foundation of this technology is being scrutinized as the industry gravitates towards advertising solutions that prioritize user privacy. This paper delves into the issue of reach measurement and optimization within the context of $k$-anonymity, a privacy-preserving model gaining traction across major online advertising platforms. We outline how to report reach within this new privacy landscape and demonstrate how probabilistic discounting, a probabilistic adaptation of traditional frequency capping, can be employed to optimize campaign performance. Experiments are performed to assess the trade-off between user privacy and the efficacy of online brand advertising. Notably, we discern a significant dip in performance as long as privacy is introduced, yet this comes with a limited additional cost for advertising platforms to offer their users more privacy.