Goto

Collaborating Authors

 Gao, Yu


OpenGS-SLAM: Open-Set Dense Semantic SLAM with 3D Gaussian Splatting for Object-Level Scene Understanding

arXiv.org Artificial Intelligence

OpenGS-SLAM: Open-Set Dense Semantic SLAM with 3D Gaussian Splatting for Object-Level Scene Understanding Dianyi Y ang 1, 2, Y u Gao 1, 2, Xihan Wang 1, 2, Y ufeng Y ue 1, 2, Yi Y ang, 1, 2, Mengyin Fu 1, 2 Abstract -- Recent advancements in 3D Gaussian Splatting have significantly improved the efficiency and quality of dense semantic SLAM. However, previous methods are generally constrained by limited-category pre-trained classifiers and implicit semantic representation, which hinder their performance in open-set scenarios and restrict 3D object-level scene understanding. T o address these issues, we propose OpenGS-SLAM, an innovative framework that utilizes 3D Gaussian representation to perform dense semantic SLAM in open-set environments. Our system integrates explicit semantic labels derived from 2D foundational models into the 3D Gaussian framework, facilitating robust 3D object-level scene understanding. We introduce Gaussian V oting Splatting to enable fast 2D label map rendering and scene updating. Additionally, we propose a Confidence-based 2D Label Consensus method to ensure consistent labeling across multiple views. Furthermore, we employ a Segmentation Counter Pruning strategy to improve the accuracy of semantic scene representation. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness of our method in scene understanding, tracking, and mapping, achieving 10 faster semantic rendering and 2 lower storage costs compared to existing methods.


SCKansformer: Fine-Grained Classification of Bone Marrow Cells via Kansformer Backbone and Hierarchical Attention Mechanisms

arXiv.org Artificial Intelligence

The incidence and mortality rates of malignant tumors, such as acute leukemia, have risen significantly. Clinically, hospitals rely on cytological examination of peripheral blood and bone marrow smears to diagnose malignant tumors, with accurate blood cell counting being crucial. Existing automated methods face challenges such as low feature expression capability, poor interpretability, and redundant feature extraction when processing high-dimensional microimage data. We propose a novel fine-grained classification model, SCKansformer, for bone marrow blood cells, which addresses these challenges and enhances classification accuracy and efficiency. The model integrates the Kansformer Encoder, SCConv Encoder, and Global-Local Attention Encoder. The Kansformer Encoder replaces the traditional MLP layer with the KAN, improving nonlinear feature representation and interpretability. The SCConv Encoder, with its Spatial and Channel Reconstruction Units, enhances feature representation and reduces redundancy. The Global-Local Attention Encoder combines Multi-head Self-Attention with a Local Part module to capture both global and local features. We validated our model using the Bone Marrow Blood Cell Fine-Grained Classification Dataset (BMCD-FGCD), comprising over 10,000 samples and nearly 40 classifications, developed with a partner hospital. Comparative experiments on our private dataset, as well as the publicly available PBC and ALL-IDB datasets, demonstrate that SCKansformer outperforms both typical and advanced microcell classification methods across all datasets. Our source code and private BMCD-FGCD dataset are available at https://github.com/JustlfC03/SCKansformer.


The Feasibility of Implementing Large-Scale Transformers on Multi-FPGA Platforms

arXiv.org Artificial Intelligence

FPGAs are rarely mentioned when discussing the implementation of large machine learning applications, such as Large Language Models (LLMs), in the data center. There has been much evidence showing that single FPGAs can be competitive with GPUs in performance for some computations, especially for low latency, and often much more efficient when power is considered. This suggests that there is merit to exploring the use of multiple FPGAs for large machine learning applications. The challenge with using multiple FPGAs is that there is no commonly-accepted flow for developing and deploying multi-FPGA applications, i.e., there are no tools to describe a large application, map it to multiple FPGAs and then deploy the application on a multi-FPGA platform. In this paper, we explore the feasibility of implementing large transformers using multiple FPGAs by developing a scalable multi-FPGA platform and some tools to map large applications to the platform. We validate our approach by designing an efficient multi-FPGA version of the I-BERT transformer and implement one encoder using six FPGAs as a working proof-of-concept to show that our platform and tools work. Based on our proof-of-concept prototype and the estimations of performance using the latest FPGAs compared to GPUs, we conclude that there can be a place for FPGAs in the world of large machine learning applications. We demonstrate a promising first step that shows that with the right infrastructure and tools it is reasonable to continue to explore the possible benefits of using FPGAs for applications such as LLMs.


Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level Feature Fusion for Aiding Diagnosis of Blood Diseases

arXiv.org Artificial Intelligence

In standard hospital blood tests, the traditional process requires doctors to manually isolate leukocytes from microscopic images of patients' blood using microscopes. These isolated leukocytes are then categorized via automatic leukocyte classifiers to determine the proportion and volume of different types of leukocytes present in the blood samples, aiding disease diagnosis. This methodology is not only time-consuming and labor-intensive, but it also has a high propensity for errors due to factors such as image quality and environmental conditions, which could potentially lead to incorrect subsequent classifications and misdiagnosis. To address these issues, this paper proposes an innovative method of leukocyte detection: the Multi-level Feature Fusion and Deformable Self-attention DETR (MFDS-DETR). To tackle the issue of leukocyte scale disparity, we designed the High-level Screening-feature Fusion Pyramid (HS-FPN), enabling multi-level fusion. This model uses high-level features as weights to filter low-level feature information via a channel attention module and then merges the screened information with the high-level features, thus enhancing the model's feature expression capability. Further, we address the issue of leukocyte feature scarcity by incorporating a multi-scale deformable self-attention module in the encoder and using the self-attention and cross-deformable attention mechanisms in the decoder, which aids in the extraction of the global features of the leukocyte feature maps. The effectiveness, superiority, and generalizability of the proposed MFDS-DETR method are confirmed through comparisons with other cutting-edge leukocyte detection models using the private WBCDD, public LISC and BCCD datasets. Our source code and private WBCCD dataset are available at https://github.com/JustlfC03/MFDS-DETR.


Take History as a Mirror in Heterogeneous Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) allows several clients to cooperatively train machine learning models without disclosing the raw data. In practice, due to the system and statistical heterogeneity among devices, synchronous FL often encounters the straggler effect. In contrast, asynchronous FL can mitigate this problem, making it suitable for scenarios involving numerous participants. However, Non-IID data and stale models present significant challenges to asynchronous FL, as they would diminish the practicality of the global model and even lead to training failures. In this work, we propose a novel asynchronous FL framework called Federated Historical Learning (FedHist), which effectively addresses the challenges posed by both Non-IID data and gradient staleness. FedHist enhances the stability of local gradients by performing weighted fusion with historical global gradients cached on the server. Relying on hindsight, it assigns aggregation weights to each participant in a multi-dimensional manner during each communication round. To further enhance the efficiency and stability of the training process, we introduce an intelligent $\ell_2$-norm amplification scheme, which dynamically regulates the learning progress based on the $\ell_2$-norms of the submitted gradients. Extensive experiments demonstrate that FedHist outperforms state-of-the-art methods in terms of convergence performance and test accuracy.


Variance-Preserving-Based Interpolation Diffusion Models for Speech Enhancement

arXiv.org Artificial Intelligence

The goal of this study is to implement diffusion models for speech enhancement (SE). The first step is to emphasize the theoretical foundation of variance-preserving (VP)-based interpolation diffusion under continuous conditions. Subsequently, we present a more concise framework that encapsulates both the VP- and variance-exploding (VE)-based interpolation diffusion methods. We demonstrate that these two methods are special cases of the proposed framework. Additionally, we provide a practical example of VP-based interpolation diffusion for the SE task. To improve performance and ease model training, we analyze the common difficulties encountered in diffusion models and suggest amenable hyper-parameters. Finally, we evaluate our model against several methods using a public benchmark to showcase the effectiveness of our approach


Sector Patch Embedding: An Embedding Module Conforming to The Distortion Pattern of Fisheye Image

arXiv.org Artificial Intelligence

Fisheye cameras suffer from image distortion while having a large field of view(LFOV). And this fact leads to poor performance on some fisheye vision tasks. One of the solutions is to optimize the current vision algorithm for fisheye images. However, most of the CNN-based methods and the Transformer-based methods lack the capability of leveraging distortion information efficiently. In this work, we propose a novel patch embedding method called Sector Patch Embedding(SPE), conforming to the distortion pattern of the fisheye image. Furthermore, we put forward a synthetic fisheye dataset based on the ImageNet-1K and explore the performance of several Transformer models on the dataset. The classification top-1 accuracy of ViT and PVT is improved by 0.75% and 2.8% with SPE respectively. The experiments show that the proposed sector patch embedding method can better perceive distortion and extract features on the fisheye images. Our method can be easily adopted to other Transformer-based models. Source code is at https://github.com/IN2-ViAUn/Sector-Patch-Embedding.


Experimental quantum adversarial learning with programmable superconducting qubits

arXiv.org Artificial Intelligence

State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China Quantum computing promises to enhance machine learning and artificial intelligence [1-3]. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks [4-12]. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted perturbations to the legitimate original data samples would facilitate incorrect predictions at a notably high confidence level [13-17]. This will pose serious problems for future quantum machine learning applications in safety and security-critical scenarios [18-20]. Here, we report the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits. We train quantum classifiers, which are built upon variational quantum circuits consisting of ten transmon qubits featuring average lifetimes of 150 µs, and average fidelities of simultaneous single-and two-qubit gates above 99.94% and 99.4% respectively, with both real-life images (e.g., medical magnetic resonance imaging scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training process would significantly enhance their robustness to such perturbations. Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios and demonstrate an effective defense strategy against adversarial attacks, which provide a valuable guide for quantum artificial intelligence applications with both near-term and future quantum devices. In recent years, artificial intelligence (AI) [21-23] and been proposed to enhance the robustness of quantum classifiers quantum computing [24-26] have made dramatic progress. However, demonstrating Their intersection gives rise to a research frontier called, quantum adversarial examples for quantum classifiers experimentally machine learning or generally, quantum AI [1-3]. A number and showing the effectiveness of the proposed countermeasures of quantum algorithms have been proposed to enhance in practice are challenging and have not previously various AI tasks [4-12].