Goto

Collaborating Authors

 Gao, Yicheng


FairREAD: Re-fusing Demographic Attributes after Disentanglement for Fair Medical Image Classification

arXiv.org Artificial Intelligence

Recent advancements in deep learning have shown transformative potential in medical imaging, yet concerns about fairness persist due to performance disparities across demographic subgroups. Existing methods aim to address these biases by mitigating sensitive attributes in image data; however, these attributes often carry clinically relevant information, and their removal can compromise model performance-a highly undesirable outcome. To address this challenge, we propose Fair Re-fusion After Disentanglement (FairREAD), a novel, simple, and efficient framework that mitigates unfairness by re-integrating sensitive demographic attributes into fair image representations. FairREAD employs orthogonality constraints and adversarial training to disentangle demographic information while using a controlled re-fusion mechanism to preserve clinically relevant details. Additionally, subgroup-specific threshold adjustments ensure equitable performance across demographic groups. Comprehensive evaluations on a large-scale clinical X-ray dataset demonstrate that FairREAD significantly reduces unfairness metrics while maintaining diagnostic accuracy, establishing a new benchmark for fairness and performance in medical image classification.


Bayesian Calibration of Win Rate Estimation with LLM Evaluators

arXiv.org Artificial Intelligence

Recent advances in large language models (LLMs) show the potential of using LLMs as evaluators for assessing the quality of text generations from LLMs. However, applying LLM evaluators naively to compare or judge between different systems can lead to unreliable results due to the intrinsic win rate estimation bias of LLM evaluators. In order to mitigate this problem, we propose two calibration methods, Bayesian Win Rate Sampling (BWRS) and Bayesian Dawid-Skene, both of which leverage Bayesian inference to more accurately infer the true win rate of generative language models. We empirically validate our methods on six datasets covering story generation, summarization, and instruction following tasks. We show that both our methods are effective in improving the accuracy of win rate estimation using LLMs as evaluators, offering a promising direction for reliable automatic text quality evaluation.