Gao, Xinyi
A Comprehensive Survey on Imbalanced Data Learning
Gao, Xinyi, Xie, Dongting, Zhang, Yihang, Wang, Zhengren, He, Conghui, Yin, Hongzhi, Zhang, Wentao
With the expansion of data availability, machine learning (ML) has achieved remarkable breakthroughs in both academia and industry. However, imbalanced data distributions are prevalent in various types of raw data and severely hinder the performance of ML by biasing the decision-making processes. To deepen the understanding of imbalanced data and facilitate the related research and applications, this survey systematically analyzing various real-world data formats and concludes existing researches for different data formats into four distinct categories: data re-balancing, feature representation, training strategy, and ensemble learning. This structured analysis help researchers comprehensively understand the pervasive nature of imbalance across diverse data format, thereby paving a clearer path toward achieving specific research goals. we provide an overview of relevant open-source libraries, spotlight current challenges, and offer novel insights aimed at fostering future advancements in this critical area of study.
Norm Augmented Graph AutoEncoders for Link Prediction
Liu, Yunhui, Zhang, Huaisong, Gao, Xinyi, Guo, Liuye, Tao, Zhen, He, Tieke
Link Prediction (LP) is a crucial problem in graph-structured data. Graph Neural Networks (GNNs) have gained prominence in LP, with Graph AutoEncoders (GAEs) being a notable representation. However, our empirical findings reveal that GAEs' LP performance suffers heavily from the long-tailed node degree distribution, i.e., low-degree nodes tend to exhibit inferior LP performance compared to high-degree nodes. \emph{What causes this degree-related bias, and how can it be mitigated?} In this study, we demonstrate that the norm of node embeddings learned by GAEs exhibits variation among nodes with different degrees, underscoring its central significance in influencing the final performance of LP. Specifically, embeddings with larger norms tend to guide the decoder towards predicting higher scores for positive links and lower scores for negative links, thereby contributing to superior performance. This observation motivates us to improve GAEs' LP performance on low-degree nodes by increasing their embedding norms, which can be implemented simply yet effectively by introducing additional self-loops into the training objective for low-degree nodes. This norm augmentation strategy can be seamlessly integrated into existing GAE methods with light computational cost. Extensive experiments on various datasets and GAE methods show the superior performance of norm-augmented GAEs.
Efficient Traffic Prediction Through Spatio-Temporal Distillation
Zhang, Qianru, Gao, Xinyi, Wang, Haixin, Yiu, Siu-Ming, Yin, Hongzhi
Graph neural networks (GNNs) have gained considerable attention in recent years for traffic flow prediction due to their ability to learn spatio-temporal pattern representations through a graph-based message-passing framework. Although GNNs have shown great promise in handling traffic datasets, their deployment in real-life applications has been hindered by scalability constraints arising from high-order message passing. Additionally, the over-smoothing problem of GNNs may lead to indistinguishable region representations as the number of layers increases, resulting in performance degradation. To address these challenges, we propose a new knowledge distillation paradigm termed LightST that transfers spatial and temporal knowledge from a high-capacity teacher to a lightweight student. Specifically, we introduce a spatio-temporal knowledge distillation framework that helps student MLPs capture graph-structured global spatio-temporal patterns while alleviating the over-smoothing effect with adaptive knowledge distillation. Extensive experiments verify that LightST significantly speeds up traffic flow predictions by 5X to 40X compared to state-of-the-art spatio-temporal GNNs, all while maintaining superior accuracy.
FedVCK: Non-IID Robust and Communication-Efficient Federated Learning via Valuable Condensed Knowledge for Medical Image Analysis
Yan, Guochen, Xie, Luyuan, Gao, Xinyi, Zhang, Wentao, Shen, Qingni, Fang, Yuejian, Wu, Zhonghai
Federated learning has become a promising solution for collaboration among medical institutions. However, data owned by each institution would be highly heterogeneous and the distribution is always non-independent and identical distribution (non-IID), resulting in client drift and unsatisfactory performance. Despite existing federated learning methods attempting to solve the non-IID problems, they still show marginal advantages but rely on frequent communication which would incur high costs and privacy concerns. In this paper, we propose a novel federated learning method: \textbf{Fed}erated learning via \textbf{V}aluable \textbf{C}ondensed \textbf{K}nowledge (FedVCK). We enhance the quality of condensed knowledge and select the most necessary knowledge guided by models, to tackle the non-IID problem within limited communication budgets effectively. Specifically, on the client side, we condense the knowledge of each client into a small dataset and further enhance the condensation procedure with latent distribution constraints, facilitating the effective capture of high-quality knowledge. During each round, we specifically target and condense knowledge that has not been assimilated by the current model, thereby preventing unnecessary repetition of homogeneous knowledge and minimizing the frequency of communications required. On the server side, we propose relational supervised contrastive learning to provide more supervision signals to aid the global model updating. Comprehensive experiments across various medical tasks show that FedVCK can outperform state-of-the-art methods, demonstrating that it's non-IID robust and communication-efficient.
Training-free Heterogeneous Graph Condensation via Data Selection
Liang, Yuxuan, Zhang, Wentao, Gao, Xinyi, Yang, Ling, Chen, Chong, Yin, Hongzhi, Tong, Yunhai, Cui, Bin
Efficient training of large-scale heterogeneous graphs is of paramount importance in real-world applications. However, existing approaches typically explore simplified models to mitigate resource and time overhead, neglecting the crucial aspect of simplifying large-scale heterogeneous graphs from the data-centric perspective. Addressing this gap, HGCond introduces graph condensation (GC) in heterogeneous graphs and generates a small condensed graph for efficient model training. Despite its efficacy in graph generation, HGCond encounters two significant limitations. The first is low effectiveness, HGCond excessively relies on the simplest relay model for the condensation procedure, which restricts the ability to exert powerful Heterogeneous Graph Neural Networks (HGNNs) with flexible condensation ratio and limits the generalization ability. The second is low efficiency, HGCond follows the existing GC methods designed for homogeneous graphs and leverages the sophisticated optimization paradigm, resulting in a time-consuming condensing procedure. In light of these challenges, we present the first Training \underline{Free} Heterogeneous Graph Condensation method, termed FreeHGC, facilitating both efficient and high-quality generation of heterogeneous condensed graphs. Specifically, we reformulate the heterogeneous graph condensation problem as a data selection issue, offering a new perspective for assessing and condensing representative nodes and edges in the heterogeneous graphs. By leveraging rich meta-paths, we introduce a new, high-quality heterogeneous data selection criterion to select target-type nodes. Furthermore, two training-free condensation strategies for heterogeneous graphs are designed to condense and synthesize other-types nodes effectively.
Contrastive Graph Condensation: Advancing Data Versatility through Self-Supervised Learning
Gao, Xinyi, Li, Yayong, Chen, Tong, Ye, Guanhua, Zhang, Wentao, Yin, Hongzhi
With the increasing computation of training graph neural networks (GNNs) on large-scale graphs, graph condensation (GC) has emerged as a promising solution to synthesize a compact, substitute graph of the large-scale original graph for efficient GNN training. However, existing GC methods predominantly employ classification as the surrogate task for optimization, thus excessively relying on node labels and constraining their utility in label-sparsity scenarios. More critically, this surrogate task tends to overfit class-specific information within the condensed graph, consequently restricting the generalization capabilities of GC for other downstream tasks. To address these challenges, we introduce Contrastive Graph Condensation (CTGC), which adopts a self-supervised surrogate task to extract critical, causal information from the original graph and enhance the cross-task generalizability of the condensed graph. Specifically, CTGC employs a dual-branch framework to disentangle the generation of the node attributes and graph structures, where a dedicated structural branch is designed to explicitly encode geometric information through nodes' positional embeddings. By implementing an alternating optimization scheme with contrastive loss terms, CTGC promotes the mutual enhancement of both branches and facilitates high-quality graph generation through the model inversion technique. Extensive experiments demonstrate that CTGC excels in handling various downstream tasks with a limited number of labels, consistently outperforming state-of-the-art GC methods.
Teaching MLPs to Master Heterogeneous Graph-Structured Knowledge for Efficient and Accurate Inference
Liu, Yunhui, Gao, Xinyi, He, Tieke, Zhao, Jianhua, Yin, Hongzhi
Heterogeneous Graph Neural Networks (HGNNs) have achieved promising results in various heterogeneous graph learning tasks, owing to their superiority in capturing the intricate relationships and diverse relational semantics inherent in heterogeneous graph structures. However, the neighborhood-fetching latency incurred by structure dependency in HGNNs makes it challenging to deploy for latency-constrained applications that require fast inference. Inspired by recent GNN-to-MLP knowledge distillation frameworks, we introduce HG2M and HG2M+ to combine both HGNN's superior performance and MLP's efficient inference. HG2M directly trains student MLPs with node features as input and soft labels from teacher HGNNs as targets, and HG2M+ further distills reliable and heterogeneous semantic knowledge into student MLPs through reliable node distillation and reliable meta-path distillation. Experiments conducted on six heterogeneous graph datasets show that despite lacking structural dependencies, HG2Ms can still achieve competitive or even better performance than HGNNs and significantly outperform vanilla MLPs. Moreover, HG2Ms demonstrate a 379.24$\times$ speedup in inference over HGNNs on the large-scale IGB-3M-19 dataset, showcasing their ability for latency-sensitive deployments.
Dataset Awareness is not Enough: Implementing Sample-level Tail Encouragement in Long-tailed Self-supervised Learning
Xiao, Haowen, Liu, Guanghui, Gao, Xinyi, Li, Yang, Lv, Fengmao, Chu, Jielei
Self-supervised learning (SSL) has shown remarkable data representation capabilities across a wide range of datasets. However, when applied to real-world datasets with long-tailed distributions, performance on multiple downstream tasks degrades significantly. Recently, the community has begun to focus more on self-supervised long-tailed learning. Some works attempt to transfer temperature mechanisms to self-supervised learning or use category-space uniformity constraints to balance the representation of different categories in the embedding space to fight against long-tail distributions. However, most of these approaches focus on the joint optimization of all samples in the dataset or on constraining the category distribution, with little attention given to whether each individual sample is optimally guided during training. To address this issue, we propose Temperature Auxiliary Sample-level Encouragement (TASE). We introduce pseudo-labels into self-supervised long-tailed learning, utilizing pseudo-label information to drive a dynamic temperature and re-weighting strategy. Specifically, We assign an optimal temperature parameter to each sample. Additionally, we analyze the lack of quantity awareness in the temperature parameter and use re-weighting to compensate for this deficiency, thereby achieving optimal training patterns at the sample level. Comprehensive experimental results on six benchmarks across three datasets demonstrate that our method achieves outstanding performance in improving long-tail recognition, while also exhibiting high robustness.
RobGC: Towards Robust Graph Condensation
Gao, Xinyi, Yin, Hongzhi, Chen, Tong, Ye, Guanhua, Zhang, Wentao, Cui, Bin
Graph neural networks (GNNs) have attracted widespread attention for their impressive capability of graph representation learning. However, the increasing prevalence of large-scale graphs presents a significant challenge for GNN training due to their computational demands, limiting the applicability of GNNs in various scenarios. In response to this challenge, graph condensation (GC) is proposed as a promising acceleration solution, focusing on generating an informative compact graph that enables efficient training of GNNs while retaining performance. Despite the potential to accelerate GNN training, existing GC methods overlook the quality of large training graphs during both the training and inference stages. They indiscriminately emulate the training graph distributions, making the condensed graphs susceptible to noises within the training graph and significantly impeding the application of GC in intricate real-world scenarios. To address this issue, we propose robust graph condensation (RobGC), a plug-and-play approach for GC to extend the robustness and applicability of condensed graphs in noisy graph structure environments. Specifically, RobGC leverages the condensed graph as a feedback signal to guide the denoising process on the original training graph. A label propagation-based alternating optimization strategy is in place for the condensation and denoising processes, contributing to the mutual purification of the condensed graph and training graph. Additionally, as a GC method designed for inductive graph inference, RobGC facilitates test-time graph denoising by leveraging the noise-free condensed graph to calibrate the structure of the test graph. Extensive experiments show that RobGC is compatible with various GC methods, significantly boosting their robustness under different types and levels of graph structural noises.
Graph Condensation for Open-World Graph Learning
Gao, Xinyi, Chen, Tong, Zhang, Wentao, Li, Yayong, Sun, Xiangguo, Yin, Hongzhi
The burgeoning volume of graph data presents significant computational challenges in training graph neural networks (GNNs), critically impeding their efficiency in various applications. To tackle this challenge, graph condensation (GC) has emerged as a promising acceleration solution, focusing on the synthesis of a compact yet representative graph for efficiently training GNNs while retaining performance. Despite the potential to promote scalable use of GNNs, existing GC methods are limited to aligning the condensed graph with merely the observed static graph distribution. This limitation significantly restricts the generalization capacity of condensed graphs, particularly in adapting to dynamic distribution changes. In real-world scenarios, however, graphs are dynamic and constantly evolving, with new nodes and edges being continually integrated. Consequently, due to the limited generalization capacity of condensed graphs, applications that employ GC for efficient GNN training end up with sub-optimal GNNs when confronted with evolving graph structures and distributions in dynamic real-world situations. To overcome this issue, we propose open-world graph condensation (OpenGC), a robust GC framework that integrates structure-aware distribution shift to simulate evolving graph patterns and exploit the temporal environments for invariance condensation. This approach is designed to extract temporal invariant patterns from the original graph, thereby enhancing the generalization capabilities of the condensed graph and, subsequently, the GNNs trained on it. Extensive experiments on both real-world and synthetic evolving graphs demonstrate that OpenGC outperforms state-of-the-art (SOTA) GC methods in adapting to dynamic changes in open-world graph environments.