Goto

Collaborating Authors

 Gao, Xiaojie


SKU-Patch: Towards Efficient Instance Segmentation for Unseen Objects in Auto-Store

arXiv.org Artificial Intelligence

In large-scale storehouses, precise instance masks are crucial for robotic bin picking but are challenging to obtain. Existing instance segmentation methods typically rely on a tedious process of scene collection, mask annotation, and network fine-tuning for every single Stock Keeping Unit (SKU). This paper presents SKU-Patch, a new patch-guided instance segmentation solution, leveraging only a few image patches for each incoming new SKU to predict accurate and robust masks, without tedious manual effort and model re-training. Technical-wise, we design a novel transformer-based network with (i) a patch-image correlation encoder to capture multi-level image features calibrated by patch information and (ii) a patch-aware transformer decoder with parallel task heads to generate instance masks. Extensive experiments on four storehouse benchmarks manifest that SKU-Patch is able to achieve the best performance over the state-of-the-art methods. Also, SKU-Patch yields an average of nearly 100% grasping success rate on more than 50 unseen SKUs in a robot-aided auto-store logistic pipeline, showing its effectiveness and practicality.


SDF-Pack: Towards Compact Bin Packing with Signed-Distance-Field Minimization

arXiv.org Artificial Intelligence

Robotic bin packing is very challenging, especially when considering practical needs such as object variety and packing compactness. This paper presents SDF-Pack, a new approach based on signed distance field (SDF) to model the geometric condition of objects in a container and compute the object placement locations and packing orders for achieving a more compact bin packing. Our method adopts a truncated SDF representation to localize the computation, and based on it, we formulate the SDF minimization heuristic to find optimized placements to compactly pack objects with the existing ones. To further improve space utilization, if the packing sequence is controllable, our method can suggest which object to be packed next. Experimental results on a large variety of everyday objects show that our method can consistently achieve higher packing compactness over 1,000 packing cases, enabling us to pack more objects into the container, compared with the existing heuristics under various packing settings.


Trans-SVNet: Accurate Phase Recognition from Surgical Videos via Hybrid Embedding Aggregation Transformer

arXiv.org Artificial Intelligence

Real-time surgical phase recognition is a fundamental task in modern operating rooms. Previous works tackle this task relying on architectures arranged in spatio-temporal order, however, the supportive benefits of intermediate spatial features are not considered. In this paper, we introduce, for the first time in surgical workflow analysis, Transformer to reconsider the ignored complementary effects of spatial and temporal features for accurate surgical phase recognition. Our hybrid embedding aggregation Transformer fuses cleverly designed spatial and temporal embeddings by allowing for active queries based on spatial information from temporal embedding sequences. More importantly, our framework is lightweight and processes the hybrid embeddings in parallel to achieve a high inference speed. Our method is thoroughly validated on two large surgical video datasets, i.e., Cholec80 and M2CAI16 Challenge datasets, and significantly outperforms the state-of-the-art approaches at a processing speed of 91 fps.


A* Tree Search for Portfolio Management

arXiv.org Artificial Intelligence

We propose a planning-based method to teach an agent to manage portfolio from scratch. Our approach combines deep reinforcement learning techniques with search techniques like AlphaGo. By uniting the advantages in A* search algorithm with Monte Carlo tree search, we come up with a new algorithm named A* tree search in which best information is returned to guide next search. Also, the expansion mode of Monte Carlo tree is improved for a higher utilization of the neural network. The suggested algorithm can also optimize non-differentiable utility function by combinatorial search. This technique is then used in our trading system. The major component is a neural network that is trained by trading experiences from tree search and outputs prior probability to guide search by pruning away branches in turn. Experimental results on simulated and real financial data verify the robustness of the proposed trading system and the trading system produces better strategies than several approaches based on reinforcement learning.