Gao, Shuzheng
The Prompt Alchemist: Automated LLM-Tailored Prompt Optimization for Test Case Generation
Gao, Shuzheng, Wang, Chaozheng, Gao, Cuiyun, Jiao, Xiaoqian, Chong, Chun Yong, Gao, Shan, Lyu, Michael
Test cases are essential for validating the reliability and quality of software applications. Recent studies have demonstrated the capability of Large Language Models (LLMs) to generate useful test cases for given source code. However, the existing work primarily relies on human-written plain prompts, which often leads to suboptimal results since the performance of LLMs can be highly influenced by the prompts. Moreover, these approaches use the same prompt for all LLMs, overlooking the fact that different LLMs might be best suited to different prompts. Given the wide variety of possible prompt formulations, automatically discovering the optimal prompt for each LLM presents a significant challenge. Although there are methods on automated prompt optimization in the natural language processing field, they are hard to produce effective prompts for the test case generation task. First, the methods iteratively optimize prompts by simply combining and mutating existing ones without proper guidance, resulting in prompts that lack diversity and tend to repeat the same errors in the generated test cases. Second, the prompts are generally lack of domain contextual knowledge, limiting LLMs' performance in the task.
Code Structure Guided Transformer for Source Code Summarization
Gao, Shuzheng, Gao, Cuiyun, He, Yulan, Zeng, Jichuan, Nie, Lun Yiu, Xia, Xin, Lyu, Michael R.
Code summaries help developers comprehend programs and reduce their time to infer the program functionalities during software maintenance. Recent efforts resort to deep learning techniques such as sequence-to-sequence models for generating accurate code summaries, among which Transformer-based approaches have achieved promising performance. However, effectively integrating the code structure information into the Transformer is under-explored in this task domain. In this paper, we propose a novel approach named SG-Trans to incorporate code structural properties into Transformer. Specifically, we inject the local symbolic information (e.g., code tokens and statements) and global syntactic structure (e.g., data flow graph) into the self-attention module of Transformer as inductive bias. To further capture the hierarchical characteristics of code, the local information and global structure are designed to distribute in the attention heads of lower layers and high layers of Transformer. Extensive evaluation shows the superior performance of SG-Trans over the state-of-the-art approaches. Compared with the best-performing baseline, SG-Trans still improves 1.4% and 2.0% in terms of METEOR score, a metric widely used for measuring generation quality, respectively on two benchmark datasets.