Goto

Collaborating Authors

 Gao, Ning


EDiT: A Local-SGD-Based Efficient Distributed Training Method for Large Language Models

arXiv.org Artificial Intelligence

Distributed training methods are crucial for large language models (LLMs). However, existing distributed training methods often suffer from communication bottlenecks, stragglers, and limited elasticity. Local SGD methods have been proposed to address these issues, but their effectiveness remains limited to small-scale training due to additional memory overhead and lack of concerns on efficiency and stability. To tackle these issues, we propose EDiT, an innovative Efficient Distributed Training method that combines a tailored Local SGD approach with model sharding techniques to enhance large-scale training efficiency. EDiT performs layer-wise parameter synchronization during forward pass, reducing communication and memory overhead and enabling the overlap of computation and communication. Besides, EDiT employs a pseudo gradient penalty strategy to suppress loss spikes, which ensures training stability and improve performance. Additionally, we introduce A-EDiT, a fully asynchronous variant of EDiT that accommodates heterogeneous clusters. Building on EDiT/A-EDiT, we conduct a series of experiments to validate large-scale asynchronous training for LLMs, accompanied by comprehensive analyses. Experimental results demonstrate the superior performance of EDiT/A-EDiT, establishing them as robust solutions for distributed LLM training in diverse computational ecosystems.


Category-Agnostic 6D Pose Estimation with Conditional Neural Processes

arXiv.org Artificial Intelligence

We present a novel meta-learning approach for 6D pose estimation on unknown objects. In contrast to ``instance-level" and ``category-level" pose estimation methods, our algorithm learns object representation in a category-agnostic way, which endows it with strong generalization capabilities across object categories. Specifically, we employ a neural process-based meta-learning approach to train an encoder to capture texture and geometry of an object in a latent representation, based on very few RGB-D images and ground-truth keypoints. The latent representation is then used by a simultaneously meta-trained decoder to predict the 6D pose of the object in new images. Furthermore, we propose a novel geometry-aware decoder for the keypoint prediction using a Graph Neural Network (GNN), which explicitly takes geometric constraints specific to each object into consideration. To evaluate our algorithm, extensive experiments are conducted on the \linemod dataset, and on our new fully-annotated synthetic datasets generated from Multiple Categories in Multiple Scenes (MCMS). Experimental results demonstrate that our model performs well on unseen objects with very different shapes and appearances. Remarkably, our model also shows robust performance on occluded scenes although trained fully on data without occlusion. To our knowledge, this is the first work exploring \textbf{cross-category level} 6D pose estimation.


Meta-Learning Regrasping Strategies for Physical-Agnostic Objects

arXiv.org Artificial Intelligence

Grasping inhomogeneous objects in real-world applications remains a challenging task due to the unknown physical properties such as mass distribution and coefficient of friction. In this study, we propose a meta-learning algorithm called ConDex, which incorporates Conditional Neural Processes (CNP) with DexNet-2.0 to autonomously discern the underlying physical properties of objects using depth images. ConDex efficiently acquires physical embeddings from limited trials, enabling precise grasping point estimation. Furthermore, ConDex is capable of updating the predicted grasping quality iteratively from new trials in an online fashion. To the best of our knowledge, we are the first who generate two object datasets focusing on inhomogeneous physical properties with varying mass distributions and friction coefficients. Extensive evaluations in simulation demonstrate ConDex's superior performance over DexNet-2.0 and existing meta-learning-based grasping pipelines. Furthermore, ConDex shows robust generalization to previously unseen real-world objects despite training solely in the simulation. The synthetic and real-world datasets will be published as well.


SA6D: Self-Adaptive Few-Shot 6D Pose Estimator for Novel and Occluded Objects

arXiv.org Artificial Intelligence

To enable meaningful robotic manipulation of objects in the real-world, 6D pose estimation is one of the critical aspects. Most existing approaches have difficulties to extend predictions to scenarios where novel object instances are continuously introduced, especially with heavy occlusions. In this work, we propose a few-shot pose estimation (FSPE) approach called SA6D, which uses a self-adaptive segmentation module to identify the novel target object and construct a point cloud model of the target object using only a small number of cluttered reference images. Unlike existing methods, SA6D does not require object-centric reference images or any additional object information, making it a more generalizable and scalable solution across categories. We evaluate SA6D on real-world tabletop object datasets and demonstrate that SA6D outperforms existing FSPE methods, particularly in cluttered scenes with occlusions, while requiring fewer reference images.


Sharpness-Aware Minimization Revisited: Weighted Sharpness as a Regularization Term

arXiv.org Artificial Intelligence

Deep Neural Networks (DNNs) generalization is known to be closely related to the flatness of minima, leading to the development of Sharpness-Aware Minimization (SAM) for seeking flatter minima and better generalization. In this paper, we revisit the loss of SAM and propose a more general method, called WSAM, by incorporating sharpness as a regularization term. We prove its generalization bound through the combination of PAC and Bayes-PAC techniques, and evaluate its performance on various public datasets. The results demonstrate that WSAM achieves improved generalization, or is at least highly competitive, compared to the vanilla optimizer, SAM and its variants. The code is available at https://github.com/intelligent-machine-learning/dlrover/tree/master/atorch/atorch/optimizers.


Measuring incompatibility and clustering quantum observables with a quantum switch

arXiv.org Artificial Intelligence

The existence of incompatible observables is a cornerstone of quantum mechanics and a valuable resource in quantum technologies. Here we introduce a measure of incompatibility, called the mutual eigenspace disturbance (MED), which quantifies the amount of disturbance induced by the measurement of a sharp observable on the eigenspaces of another. The MED provides a metric on the space of von Neumann measurements, and can be efficiently estimated by letting the measurement processes act in an indefinite order, using a setup known as the quantum switch, which also allows one to quantify the noncommutativity of arbitrary quantum processes. Thanks to these features, the MED can be used in quantum machine learning tasks. We demonstrate this application by providing an unsupervised algorithm that clusters unknown von Neumann measurements. Our algorithm is robust to noise can be used to identify groups of observers that share approximately the same measurement context.