Goto

Collaborating Authors

 Gao, Mingye


Multi-head Reward Aggregation Guided by Entropy

arXiv.org Artificial Intelligence

Aligning large language models (LLMs) with safety guidelines typically involves reinforcement learning from human feedback (RLHF), relying on human-generated preference annotations. However, assigning consistent overall quality ratings is challenging, prompting recent research to shift towards detailed evaluations based on multiple specific safety criteria. This paper uncovers a consistent observation: safety rules characterized by high rating entropy are generally less reliable in identifying responses preferred by humans. Leveraging this finding, we introduce ENCORE, a straightforward entropy-guided approach that composes multi-head rewards by downweighting rules exhibiting high rating entropy. Theoretically, we demonstrate that rules with elevated entropy naturally receive minimal weighting in the Bradley-Terry optimization framework, justifying our entropy-based penalization. Through extensive experiments on RewardBench safety tasks, our method significantly surpasses several competitive baselines, including random weighting, uniform weighting, single-head Bradley-Terry models, and LLM-based judging methods. Our proposed approach is training-free, broadly applicable to various datasets, and maintains interpretability, offering a practical and effective solution for multi-attribute reward modeling.


Data-adaptive Safety Rules for Training Reward Models

arXiv.org Artificial Intelligence

Reinforcement Learning from Human Feedback (RLHF) is commonly employed to tailor models to human preferences, especially to improve the safety of outputs from large language models (LLMs). Traditionally, this method depends on selecting preferred responses from pairs. However, due to the variability in human opinions and the challenges in directly comparing two responses, there is an increasing trend towards fine-grained annotation approaches that evaluate responses using multiple targeted metrics or rules. The challenge lies in efficiently choosing and applying these rules to handle the diverse range of preference data. In this paper, we propose a dynamic method that adaptively selects the most important rules for each response pair. We introduce a mathematical framework that utilizes the maximum discrepancy across paired responses and demonstrate theoretically that this approach maximizes the mutual information between the rule-based annotations and the underlying true preferences. We then train an 8B reward model using this adaptively labeled preference dataset and assess its efficacy using RewardBench. As of January 25, 2025, our model achieved the highest safety performance on the leaderboard, surpassing various larger models.


Rule-based Data Selection for Large Language Models

arXiv.org Artificial Intelligence

There are increasing studies using LLMs to rate and select data based on several human-crafted metrics (rules). However, these conventional rule-based approaches often depend too heavily on human heuristics, lack effective metrics for assessing rules, and exhibit limited adaptability to new tasks. In our study, we introduce an innovative rule-based framework that utilizes the orthogonality of score vectors associated with rules as a novel metric for rule evaluations. Our approach includes an automated pipeline that first uses LLMs to generate a diverse set of rules, encompassing various rating dimensions to evaluate data quality. Then it rates a batch of data based on these rules and uses the determinantal point process (DPP) from random matrix theory to select the most orthogonal score vectors, thereby identifying a set of independent rules. These rules are subsequently used to evaluate all data, selecting samples with the highest average scores for downstream tasks such as LLM training. We verify the effectiveness of our method through two experimental setups: 1) comparisons with ground truth ratings and 2) benchmarking LLMs trained with the chosen data. Our comprehensive experiments cover a range of scenarios, including general pre-training and domain-specific fine-tuning in areas such as IMDB, Medical, Math, and Code. The outcomes demonstrate that our DPP-based rule rating method consistently outperforms other approaches, including rule-free rating, uniform sampling, importance resampling, and QuRating, in terms of both rating precision and model performance.


The use of large language models to enhance cancer clinical trial educational materials

arXiv.org Artificial Intelligence

Cancer clinical trials often face challenges in recruitment and engagement due to a lack of participant-facing informational and educational resources. This study investigated the potential of Large Language Models (LLMs), specifically GPT4, in generating patient-friendly educational content from clinical trial informed consent forms. Using data from ClinicalTrials.gov, we employed zero-shot learning for creating trial summaries and one-shot learning for developing multiple-choice questions, evaluating their effectiveness through patient surveys and crowdsourced annotation. Results showed that GPT4-generated summaries were both readable and comprehensive, and may improve patients' understanding and interest in clinical trials. The multiple-choice questions demonstrated high accuracy and agreement with crowdsourced annotators. For both resource types, hallucinations were identified that require ongoing human oversight. The findings demonstrate the potential of LLMs "out-of-the-box" to support the generation of clinical trial education materials with minimal trial-specific engineering, but implementation with a human-in-the-loop is still needed to avoid misinformation risks.


Wait, but Tylenol is Acetaminophen... Investigating and Improving Language Models' Ability to Resist Requests for Misinformation

arXiv.org Artificial Intelligence

Background: Large language models (LLMs) are trained to follow directions, but this introduces a vulnerability to blindly comply with user requests even if they generate wrong information. In medicine, this could accelerate the generation of misinformation that impacts human well-being. Objectives/Methods: We analyzed compliance to requests to generate misleading content about medications in settings where models know the request is illogical. We investigated whether in-context directions and instruction-tuning of LLMs to prioritize logical reasoning over compliance reduced misinformation risk. Results: While all frontier LLMs complied with misinformation requests, both prompt-based and parameter-based approaches can improve the detection of logic flaws in requests and prevent the dissemination of medical misinformation. Conclusion: Shifting LLMs to prioritize logic over compliance could reduce risks of exploitation for medical misinformation.


Language Models are Surprisingly Fragile to Drug Names in Biomedical Benchmarks

arXiv.org Artificial Intelligence

Medical knowledge is context-dependent and requires consistent reasoning across various natural language expressions of semantically equivalent phrases. This is particularly crucial for drug names, where patients often use brand names like Advil or Tylenol instead of their generic equivalents. To study this, we create a new robustness dataset, RABBITS, to evaluate performance differences on medical benchmarks after swapping brand and generic drug names using physician expert annotations. We assess both open-source and API-based LLMs on MedQA and MedMCQA, revealing a consistent performance drop ranging from 1-10\%. Furthermore, we identify a potential source of this fragility as the contamination of test data in widely used pre-training datasets. All code is accessible at https://github.com/BittermanLab/RABBITS, and a HuggingFace leaderboard is available at https://huggingface.co/spaces/AIM-Harvard/rabbits-leaderboard.


A Comprehensive Survey of Accelerated Generation Techniques in Large Language Models

arXiv.org Artificial Intelligence

Despite the crucial importance of accelerating text generation in large language models (LLMs) for efficiently producing content, the sequential nature of this process often leads to high inference latency, posing challenges for real-time applications. Various techniques have been proposed and developed to address these challenges and improve efficiency. This paper presents a comprehensive survey of accelerated generation techniques in autoregressive language models, aiming to understand the state-of-the-art methods and their applications. We categorize these techniques into several key areas: speculative decoding, early exiting mechanisms, and non-autoregressive methods. We discuss each category's underlying principles, advantages, limitations, and recent advancements. Through this survey, we aim to offer insights into the current landscape of techniques in LLMs and provide guidance for future research directions in this critical area of natural language processing.


Natural Language Embedded Programs for Hybrid Language Symbolic Reasoning

arXiv.org Artificial Intelligence

How can we perform computations over natural language representations to solve tasks that require symbolic and numeric reasoning? We propose natural language embedded programs (NLEP) as a unifying framework for addressing math/symbolic reasoning, natural language understanding, and instruction following tasks. Our approach prompts a language model to generate full Python programs that define functions over data structures which contain natural language representations of structured knowledge. A Python interpreter then executes the generated code and prints the output. Despite using a task-general prompt, we find that this approach can improve upon strong baselines across a range of different tasks including math and symbolic reasoning, text classification, question answering, and instruction following. We further find the generated programs are often interpretable and enable post-hoc verification of the intermediate reasoning steps.