Gao, Minghe
Iris: Breaking GUI Complexity with Adaptive Focus and Self-Refining
Ge, Zhiqi, Li, Juncheng, Pang, Xinglei, Gao, Minghe, Pan, Kaihang, Lin, Wang, Fei, Hao, Zhang, Wenqiao, Tang, Siliang, Zhuang, Yueting
Digital agents are increasingly employed to automate tasks in interactive digital environments such as web pages, software applications, and operating systems. While text-based agents built on Large Language Models (LLMs) often require frequent updates due to platform-specific APIs, visual agents leveraging Multimodal Large Language Models (MLLMs) offer enhanced adaptability by interacting directly with Graphical User Interfaces (GUIs). However, these agents face significant challenges in visual perception, particularly when handling high-resolution, visually complex digital environments. This paper introduces Iris, a foundational visual agent that addresses these challenges through two key innovations: Information-Sensitive Cropping (ISC) and Self-Refining Dual Learning (SRDL). ISC dynamically identifies and prioritizes visually dense regions using a edge detection algorithm, enabling efficient processing by allocating more computational resources to areas with higher information density. SRDL enhances the agent's ability to handle complex tasks by leveraging a dual-learning loop, where improvements in referring (describing UI elements) reinforce grounding (locating elements) and vice versa, all without requiring additional annotated data. Empirical evaluations demonstrate that Iris achieves state-of-the-art performance across multiple benchmarks with only 850K GUI annotations, outperforming methods using 10x more training data. These improvements further translate to significant gains in both web and OS agent downstream tasks.
STEP: Enhancing Video-LLMs' Compositional Reasoning by Spatio-Temporal Graph-guided Self-Training
Qiu, Haiyi, Gao, Minghe, Qian, Long, Pan, Kaihang, Yu, Qifan, Li, Juncheng, Wang, Wenjie, Tang, Siliang, Zhuang, Yueting, Chua, Tat-Seng
Video Large Language Models (Video-LLMs) have recently shown strong performance in basic video understanding tasks, such as captioning and coarse-grained question answering, but struggle with compositional reasoning that requires multi-step spatio-temporal inference across object relations, interactions, and events. The hurdles to enhancing this capability include extensive manual labor, the lack of spatio-temporal compositionality in existing data and the absence of explicit reasoning supervision. In this paper, we propose STEP, a novel graph-guided self-training method that enables Video-LLMs to generate reasoning-rich fine-tuning data from any raw videos to improve itself. Specifically, we first induce Spatio-Temporal Scene Graph (STSG) representation of diverse videos to capture fine-grained, multi-granular video semantics. Then, the STSGs guide the derivation of multi-step reasoning Question-Answer (QA) data with Chain-of-Thought (CoT) rationales. Both answers and rationales are integrated as training objective, aiming to enhance model's reasoning abilities by supervision over explicit reasoning steps. Experimental results demonstrate the effectiveness of STEP across models of varying scales, with a significant 21.3\% improvement in tasks requiring three or more reasoning steps. Furthermore, it achieves superior performance with a minimal amount of self-generated rationale-enriched training samples in both compositional reasoning and comprehensive understanding benchmarks, highlighting the broad applicability and vast potential.
Generalist Virtual Agents: A Survey on Autonomous Agents Across Digital Platforms
Gao, Minghe, Bu, Wendong, Miao, Bingchen, Wu, Yang, Li, Yunfei, Li, Juncheng, Tang, Siliang, Wu, Qi, Zhuang, Yueting, Wang, Meng
In this paper, we introduce the Generalist Virtual Agent (GVA), an autonomous entity engineered to function across diverse digital platforms and environments, assisting users by executing a variety of tasks. This survey delves into the evolution of GVAs, tracing their progress from early intelligent assistants to contemporary implementations that incorporate large-scale models. We explore both the philosophical underpinnings and practical foundations of GVAs, addressing their developmental challenges and the methodologies currently employed in their design and operation. By presenting a detailed taxonomy of GVA environments, tasks, and capabilities, this paper aims to bridge the theoretical and practical aspects of GVAs, concluding those that operate in environments closely mirroring the real world are more likely to demonstrate human-like intelligence. We discuss potential future directions for GVA research, highlighting the necessity for realistic evaluation metrics and the enhancement of long-sequence decision-making capabilities to advance the field toward more systematic or embodied applications. This work not only synthesizes the existing body of literature but also proposes frameworks for future investigations, contributing significantly to the ongoing development of intelligent systems.