Gao, Difei
WorldGUI: Dynamic Testing for Comprehensive Desktop GUI Automation
Zhao, Henry Hengyuan, Gao, Difei, Shou, Mike Zheng
Current GUI agents have achieved outstanding performance in GUI element grounding. However, planning remains highly challenging, especially due to sensitivity to the initial state of the environment. Specifically, slight differences in the initial state-such as the target software not being open or the interface not being in its default state-often lead to planning errors. This issue is widespread in real user scenarios, but existing benchmarks fail to evaluate it. In this paper, we present WorldGUI, a novel GUI benchmark that designs GUI tasks with various initial states to simulate real computer-user interactions. The benchmark spans a wide range of tasks across 10 popular software applications, including PowerPoint, VSCode, and Adobe Acrobat. In addition, to address the challenges of dynamic GUI automation tasks, we propose GUI-Thinker, a holistic framework, leveraging a critique mechanism, that effectively manages the unpredictability and complexity of GUI interactions. Experimental results demonstrate that GUI-Thinker significantly outperforms Claude-3.5 (Computer Use) by 14.9% in success rate on WorldGUI tasks. This improvement underscores the effectiveness of our critical-thinking-based framework in enhancing GUI automation.
ShowUI: One Vision-Language-Action Model for GUI Visual Agent
Lin, Kevin Qinghong, Li, Linjie, Gao, Difei, Yang, Zhengyuan, Wu, Shiwei, Bai, Zechen, Lei, Weixian, Wang, Lijuan, Shou, Mike Zheng
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity. While most agents are language-based, relying on closed-source API with text-rich meta-information (e.g., HTML or accessibility tree), they show limitations in perceiving UI visuals as humans do, highlighting the need for GUI visual agents. In this work, we develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations: (i) UI-Guided Visual Token Selection to reduce computational costs by formulating screenshots as an UI connected graph, adaptively identifying their redundant relationship and serve as the criteria for token selection during self-attention blocks; (ii) Interleaved Vision-Language-Action Streaming that flexibly unifies diverse needs within GUI tasks, enabling effective management of visual-action history in navigation or pairing multi-turn query-action sequences per screenshot to enhance training efficiency; (iii) Small-scale High-quality GUI Instruction-following Datasets by careful data curation and employing a resampling strategy to address significant data type imbalances. With above components, ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding. Its UI-guided token selection further reduces 33% of redundant visual tokens during training and speeds up the performance by 1.4x. Navigation experiments across web Mind2Web, mobile AITW, and online MiniWob environments further underscore the effectiveness and potential of our model in advancing GUI visual agents. The models are available at https://github.com/showlab/ShowUI.
The Dawn of GUI Agent: A Preliminary Case Study with Claude 3.5 Computer Use
Hu, Siyuan, Ouyang, Mingyu, Gao, Difei, Shou, Mike Zheng
The recently released model, Claude 3.5 Computer Use, stands out as the first frontier AI model to offer computer use in public beta as a graphical user interface (GUI) agent. As an early beta, its capability in the real-world complex environment remains unknown. In this case study to explore Claude 3.5 Computer Use, we curate and organize a collection of carefully designed tasks spanning a variety of domains and software. Observations from these cases demonstrate Claude 3.5 Computer Use's unprecedented ability in end-to-end language to desktop actions. Along with this study, we provide an out-of-the-box agent framework for deploying API-based GUI automation models with easy implementation. Our case studies aim to showcase a groundwork of capabilities and limitations of Claude 3.5 Computer Use with detailed analyses and bring to the fore questions about planning, action, and critic, which must be considered for future improvement. We hope this preliminary exploration will inspire future research into the GUI agent community. All the test cases in the paper can be tried through the project: https://github.com/showlab/computer_use_ootb.
VideoGUI: A Benchmark for GUI Automation from Instructional Videos
Lin, Kevin Qinghong, Li, Linjie, Gao, Difei, WU, Qinchen, Yan, Mingyi, Yang, Zhengyuan, Wang, Lijuan, Shou, Mike Zheng
Graphical User Interface (GUI) automation holds significant promise for enhancing human productivity by assisting with computer tasks. Existing task formulations primarily focus on simple tasks that can be specified by a single, language-only instruction, such as "Insert a new slide." In this work, we introduce VideoGUI, a novel multi-modal benchmark designed to evaluate GUI assistants on visual-centric GUI tasks. Sourced from high-quality web instructional videos, our benchmark focuses on tasks involving professional and novel software (e.g., Adobe Photoshop or Stable Diffusion WebUI) and complex activities (e.g., video editing). VideoGUI evaluates GUI assistants through a hierarchical process, allowing for identification of the specific levels at which they may fail: (i) high-level planning: reconstruct procedural subtasks from visual conditions without language descriptions; (ii) middle-level planning: generate sequences of precise action narrations based on visual state (i.e., screenshot) and goals; (iii) atomic action execution: perform specific actions such as accurately clicking designated elements. For each level, we design evaluation metrics across individual dimensions to provide clear signals, such as individual performance in clicking, dragging, typing, and scrolling for atomic action execution. Our evaluation on VideoGUI reveals that even the SoTA large multimodal model GPT4o performs poorly on visual-centric GUI tasks, especially for high-level planning.
LOVA3: Learning to Visual Question Answering, Asking and Assessment
Zhao, Henry Hengyuan, Zhou, Pan, Gao, Difei, Shou, Mike Zheng
Question answering, asking, and assessment are three innate human traits crucial for understanding the world and acquiring knowledge. By enhancing these capabilities, humans can more effectively utilize data, leading to better comprehension and learning outcomes. However, current Multimodal Large Language Models (MLLMs) primarily focus on question answering, often neglecting the full potential of questioning and assessment skills. In this study, we introduce LOVA3, an innovative framework named ``Learning tO Visual Question Answering, Asking and Assessment,'' designed to equip MLLMs with these additional capabilities. Our approach involves the creation of two supplementary training tasks GenQA and EvalQA, aiming at fostering the skills of asking and assessing questions in the context of images. To develop the questioning ability, we compile a comprehensive set of multimodal foundational tasks. For assessment, we introduce a new benchmark called EvalQABench, comprising 64,000 training samples (split evenly between positive and negative samples) and 5,000 testing samples. We posit that enhancing MLLMs with the capabilities to answer, ask, and assess questions will improve their multimodal comprehension and lead to better performance. We validate our hypothesis by training an MLLM using the LOVA3 framework and testing it on 10 multimodal benchmarks. The results demonstrate consistent performance improvements, thereby confirming the efficacy of our approach.
ViT-Lens-2: Gateway to Omni-modal Intelligence
Lei, Weixian, Ge, Yixiao, Yi, Kun, Zhang, Jianfeng, Gao, Difei, Sun, Dylan, Ge, Yuying, Shan, Ying, Shou, Mike Zheng
Aiming to advance AI agents, large foundation models significantly improve reasoning and instruction execution, yet the current focus on vision and language neglects the potential of perceiving diverse modalities in open-world environments. However, the success of data-driven vision and language models is costly or even infeasible to be reproduced for rare modalities. In this paper, we present ViT-Lens-2 that facilitates efficient omni-modal representation learning by perceiving novel modalities with a pretrained ViT and aligning them to a pre-defined space. Specifically, the modality-specific lens is tuned to project any-modal signals to an intermediate embedding space, which are then processed by a strong ViT with pre-trained visual knowledge. The encoded representations are optimized toward aligning with the modal-independent space, pre-defined by off-the-shelf foundation models. ViT-Lens-2 provides a unified solution for representation learning of increasing modalities with two appealing advantages: (i) Unlocking the great potential of pretrained ViTs to novel modalities effectively with efficient data regime; (ii) Enabling emergent downstream capabilities through modality alignment and shared ViT parameters. We tailor ViT-Lens-2 to learn representations for 3D point cloud, depth, audio, tactile and EEG, and set new state-of-the-art results across various understanding tasks, such as zero-shot classification. By seamlessly integrating ViT-Lens-2 into Multimodal Foundation Models, we enable Any-modality to Text and Image Generation in a zero-shot manner. Code and models are available at https://github.com/TencentARC/ViT-Lens.
Recap: Detecting Deepfake Video with Unpredictable Tampered Traces via Recovering Faces and Mapping Recovered Faces
Hu, Juan, Liao, Xin, Gao, Difei, Tsutsui, Satoshi, Wang, Qian, Qin, Zheng, Shou, Mike Zheng
The exploitation of Deepfake techniques for malicious intentions has driven significant research interest in Deepfake detection. Deepfake manipulations frequently introduce random tampered traces, leading to unpredictable outcomes in different facial regions. However, existing detection methods heavily rely on specific forgery indicators, and as the forgery mode improves, these traces become increasingly randomized, resulting in a decline in the detection performance of methods reliant on specific forgery traces. To address the limitation, we propose Recap, a novel Deepfake detection model that exposes unspecific facial part inconsistencies by recovering faces and enlarges the differences between real and fake by mapping recovered faces. In the recovering stage, the model focuses on randomly masking regions of interest (ROIs) and reconstructing real faces without unpredictable tampered traces, resulting in a relatively good recovery effect for real faces while a poor recovery effect for fake faces. In the mapping stage, the output of the recovery phase serves as supervision to guide the facial mapping process. This mapping process strategically emphasizes the mapping of fake faces with poor recovery, leading to a further deterioration in their representation, while enhancing and refining the mapping of real faces with good representation. As a result, this approach significantly amplifies the discrepancies between real and fake videos. Our extensive experiments on standard benchmarks demonstrate that Recap is effective in multiple scenarios.
GroundNLQ @ Ego4D Natural Language Queries Challenge 2023
Hou, Zhijian, Ji, Lei, Gao, Difei, Zhong, Wanjun, Yan, Kun, Li, Chao, Chan, Wing-Kwong, Ngo, Chong-Wah, Duan, Nan, Shou, Mike Zheng
In this report, we present our champion solution for Ego4D Natural Language Queries (NLQ) Challenge in CVPR 2023. Essentially, to accurately ground in a video, an effective egocentric feature extractor and a powerful grounding model are required. Motivated by this, we leverage a two-stage pre-training strategy to train egocentric feature extractors and the grounding model on video narrations, and further fine-tune the model on annotated data. In addition, we introduce a novel grounding model GroundNLQ, which employs a multi-modal multi-scale grounding module for effective video and text fusion and various temporal intervals, especially for long videos. On the blind test set, GroundNLQ achieves 25.67 and 18.18 for R1@IoU=0.3 and R1@IoU=0.5, respectively, and surpasses all other teams by a noticeable margin. Our code will be released at\url{https://github.com/houzhijian/GroundNLQ}.
CONE: An Efficient COarse-to-fiNE Alignment Framework for Long Video Temporal Grounding
Hou, Zhijian, Zhong, Wanjun, Ji, Lei, Gao, Difei, Yan, Kun, Chan, Wing-Kwong, Ngo, Chong-Wah, Shou, Zheng, Duan, Nan
This paper tackles an emerging and challenging problem of long video temporal grounding~(VTG) that localizes video moments related to a natural language (NL) query. Compared with short videos, long videos are also highly demanded but less explored, which brings new challenges in higher inference computation cost and weaker multi-modal alignment. To address these challenges, we propose CONE, an efficient COarse-to-fiNE alignment framework. CONE is a plug-and-play framework on top of existing VTG models to handle long videos through a sliding window mechanism. Specifically, CONE (1) introduces a query-guided window selection strategy to speed up inference, and (2) proposes a coarse-to-fine mechanism via a novel incorporation of contrastive learning to enhance multi-modal alignment for long videos. Extensive experiments on two large-scale long VTG benchmarks consistently show both substantial performance gains (e.g., from 3.13% to 6.87% on MAD) and state-of-the-art results. Analyses also reveal higher efficiency as the query-guided window selection mechanism accelerates inference time by 2x on Ego4D-NLQ and 15x on MAD while keeping SOTA results. Codes have been released at https://github.com/houzhijian/CONE.
From Two Graphs to N Questions: A VQA Dataset for Compositional Reasoning on Vision and Commonsense
Gao, Difei, Wang, Ruiping, Shan, Shiguang, Chen, Xilin
Visual Question Answering (VQA) is a challenging task for evaluating the ability of comprehensive understanding of the world. Existing benchmarks usually focus on the reasoning abilities either only on the vision or mainly on the knowledge with relatively simple abilities on vision. However, the ability of answering a question that requires alternatively inferring on the image content and the commonsense knowledge is crucial for an advanced VQA system. In this paper, we introduce a VQA dataset that provides more challenging and general questions about Compositional Reasoning on v I sion and Commonsense, which is named as CRIC. T o create this dataset, we develop a powerful method to automatically generate compositional questions and rich annotations from both the scene graph of a given image and some external knowledge graph. Moreover, this paper presents a new compositional model that is capable of implementing various types of reasoning functions on the image content and the knowledge graph. Further, we analyze several baselines, state-of-the-art and our model on CRIC dataset. The experimental results show that the proposed task is challenging, where state-of-the-art obtains 52.26% accuracy and our model obtains 58.38%.