Plotting

 Gao, Chao


Community Detection in Degree-Corrected Block Models

arXiv.org Machine Learning

Community detection is a central problem of network data analysis. Given a network, the goal of community detection is to partition the network nodes into a small number of clusters, which could often help reveal interesting structures. The present paper studies community detection in Degree-Corrected Block Models (DCBMs). We first derive asymptotic minimax risks of the problem for a misclassification proportion loss under appropriate conditions. The minimax risks are shown to depend on degree-correction parameters, community sizes, and average within and between community connectivities in an intuitive and interpretable way. In addition, we propose a polynomial time algorithm to adaptively perform consistent and even asymptotically optimal community detection in DCBMs.


Minimax Optimal Convergence Rates for Estimating Ground Truth from Crowdsourced Labels

arXiv.org Machine Learning

Crowdsourcing has become a primary means for label collection in many real-world machine learning applications. A classical method for inferring the true labels from the noisy labels provided by crowdsourcing workers is Dawid-Skene estimator. In this paper, we prove convergence rates of a projected EM algorithm for the Dawid-Skene estimator. The revealed exponent in the rate of convergence is shown to be optimal via a lower bound argument. Our work resolves the long standing issue of whether Dawid-Skene estimator has sound theoretical guarantees besides its good performance observed in practice. In addition, a comparative study with majority voting illustrates both advantages and pitfalls of the Dawid-Skene estimator.


Exact Exponent in Optimal Rates for Crowdsourcing

arXiv.org Machine Learning

In many machine learning applications, crowdsourcing has become the primary means for label collection. In this paper, we study the optimal error rate for aggregating labels provided by a set of non-expert workers. Under the classic Dawid-Skene model, we establish matching upper and lower bounds with an exact exponent $mI(\pi)$ in which $m$ is the number of workers and $I(\pi)$ the average Chernoff information that characterizes the workers' collective ability. Such an exact characterization of the error exponent allows us to state a precise sample size requirement $m>\frac{1}{I(\pi)}\log\frac{1}{\epsilon}$ in order to achieve an $\epsilon$ misclassification error. In addition, our results imply the optimality of various EM algorithms for crowdsourcing initialized by consistent estimators.


Optimal Estimation and Completion of Matrices with Biclustering Structures

arXiv.org Machine Learning

Biclustering structures in data matrices were first formalized in a seminal paper by John Hartigan (1972) where one seeks to cluster cases and variables simultaneously. Such structures are also prevalent in block modeling of networks. In this paper, we develop a unified theory for the estimation and completion of matrices with biclustering structures, where the data is a partially observed and noise contaminated data matrix with a certain biclustering structure. In particular, we show that a constrained least squares estimator achieves minimax rate-optimal performance in several of the most important scenarios. To this end, we derive unified high probability upper bounds for all sub-Gaussian data and also provide matching minimax lower bounds in both Gaussian and binary cases. Due to the close connection of graphon to stochastic block models, an immediate consequence of our general results is a minimax rate-optimal estimator for sparse graphons.


Achieving Optimal Misclassification Proportion in Stochastic Block Model

arXiv.org Machine Learning

Community detection is a fundamental statistical problem in network data analysis. Many algorithms have been proposed to tackle this problem. Most of these algorithms are not guaranteed to achieve the statistical optimality of the problem, while procedures that achieve information theoretic limits for general parameter spaces are not computationally tractable. In this paper, we present a computationally feasible two-stage method that achieves optimal statistical performance in misclassification proportion for stochastic block model under weak regularity conditions. Our two-stage procedure consists of a generic refinement step that can take a wide range of weakly consistent community detection procedures as initializer, to which the refinement stage applies and outputs a community assignment achieving optimal misclassification proportion with high probability. The practical effectiveness of the new algorithm is demonstrated by competitive numerical results.


Posterior Contraction Rates of the Phylogenetic Indian Buffet Processes

arXiv.org Machine Learning

By expressing prior distributions as general stochastic processes, nonparametric Bayesian methods provide a flexible way to incorporate prior knowledge and constrain the latent structure in statistical inference. The Indian buffet process (IBP) is such an example that can be used to define a prior distribution on infinite binary features, where the exchangeability among subjects is assumed. The phylogenetic Indian buffet process (pIBP), a derivative of IBP, enables the modeling of non-exchangeability among subjects through a stochastic process on a rooted tree, which is similar to that used in phylogenetics, to describe relationships among the subjects. In this paper, we study the theoretical properties of IBP and pIBP under a binary factor model. We establish the posterior contraction rates for both IBP and pIBP and substantiate the theoretical results through simulation studies. This is the first work addressing the frequentist property of the posterior behaviors of IBP and pIBP. We also demonstrated its practical usefulness by applying pIBP prior to a real data example arising in the field of cancer genomics where the exchangeability among subjects is violated.


Sparse CCA via Precision Adjusted Iterative Thresholding

arXiv.org Machine Learning

Sparse Canonical Correlation Analysis (CCA) has received considerable attention in high-dimensional data analysis to study the relationship between two sets of random variables. However, there has been remarkably little theoretical statistical foundation on sparse CCA in high-dimensional settings despite active methodological and applied research activities. In this paper, we introduce an elementary sufficient and necessary characterization such that the solution of CCA is indeed sparse, propose a computationally efficient procedure, called CAPIT, to estimate the canonical directions, and show that the procedure is rate-optimal under various assumptions on nuisance parameters. The procedure is applied to a breast cancer dataset from The Cancer Genome Atlas project. We identify methylation probes that are associated with genes, which have been previously characterized as prognosis signatures of the metastasis of breast cancer.