Gao, Can
Fence Theorem: Towards Dual-Objective Semantic-Structure Isolation in Preprocessing Phase for 3D Anomaly Detection
Liang, Hanzhe, Zhou, Jie, Chen, Xuanxin, Dai, Tao, Wang, Jinbao, Gao, Can
3D anomaly detection (AD) is prominent but difficult due to lacking a unified theoretical foundation for preprocessing design. We establish the Fence Theorem, formalizing preprocessing as a dual-objective semantic isolator: (1) mitigating cross-semantic interference to the greatest extent feasible and (2) confining anomaly judgments to aligned semantic spaces wherever viable, thereby establishing intra-semantic comparability. Any preprocessing approach achieves this goal through a two-stage process of Emantic-Division and Spatial-Constraints stage. Through systematic deconstruction, we theoretically and experimentally subsume existing preprocessing methods under this theorem via tripartite evidence: qualitative analyses, quantitative studies, and mathematical proofs. Guided by the Fence Theorem, we implement Patch3D, consisting of Patch-Cutting and Patch-Matching modules, to segment semantic spaces and consolidate similar ones while independently modeling normal features within each space. Experiments on Anomaly-ShapeNet and Real3D-AD with different settings demonstrate that progressively finer-grained semantic alignment in preprocessing directly enhances point-level AD accuracy, providing inverse validation of the theorem's causal logic.
Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space
Pan, Linchao, Gao, Can, Zhou, Jie, Wang, Jinbao
Learning with Noisy Labels (LNL) aims to improve the model generalization when facing data with noisy labels, and existing methods generally assume that noisy labels come from known classes, called closed-set noise. However, in real-world scenarios, noisy labels from similar unknown classes, i.e., open-set noise, may occur during the training and inference stage. Such open-world noisy labels may significantly impact the performance of LNL methods. In this study, we propose a novel dual-space joint learning method to robustly handle the open-world noise. To mitigate model overfitting on closed-set and open-set noises, a dual representation space is constructed by two networks. One is a projection network that learns shared representations in the prototype space, while the other is a One-Vs-All (OVA) network that makes predictions using unique semantic representations in the class-independent space. Then, bi-level contrastive learning and consistency regularization are introduced in two spaces to enhance the detection capability for data with unknown classes. To benefit from the memorization effects across different types of samples, class-independent margin criteria are designed for sample identification, which selects clean samples, weights closed-set noise, and filters open-set noise effectively. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods and achieves an average accuracy improvement of 4.55\% and an AUROC improvement of 6.17\% on CIFAR80N.
Fuzzy Granule Density-Based Outlier Detection with Multi-Scale Granular Balls
Gao, Can, Tan, Xiaofeng, Zhou, Jie, Ding, Weiping, Pedrycz, Witold
Outlier detection refers to the identification of anomalous samples that deviate significantly from the distribution of normal data and has been extensively studied and used in a variety of practical tasks. However, most unsupervised outlier detection methods are carefully designed to detect specified outliers, while real-world data may be entangled with different types of outliers. In this study, we propose a fuzzy rough sets-based multi-scale outlier detection method to identify various types of outliers. Specifically, a novel fuzzy rough sets-based method that integrates relative fuzzy granule density is first introduced to improve the capability of detecting local outliers. Then, a multi-scale view generation method based on granular-ball computing is proposed to collaboratively identify group outliers at different levels of granularity. Moreover, reliable outliers and inliers determined by the three-way decision are used to train a weighted support vector machine to further improve the performance of outlier detection. The proposed method innovatively transforms unsupervised outlier detection into a semi-supervised classification problem and for the first time explores the fuzzy rough sets-based outlier detection from the perspective of multi-scale granular balls, allowing for high adaptability to different types of outliers. Extensive experiments carried out on both artificial and UCI datasets demonstrate that the proposed outlier detection method significantly outperforms the state-of-the-art methods, improving the results by at least 8.48% in terms of the Area Under the ROC Curve (AUROC) index. { The source codes are released at \url{https://github.com/Xiaofeng-Tan/MGBOD}. }
UNIMO-3: Multi-granularity Interaction for Vision-Language Representation Learning
Yang, Hao, Gao, Can, Lรญu, Hao, Xiao, Xinyan, Zhao, Yanyan, Qin, Bing
Vision-and-language (VL) pre-training, which aims to learn a general representation of image-text pairs that can be transferred to various vision-and-language tasks. Compared with modeling uni-modal data, the main challenge of the VL model is: how to learn the cross-modal interaction from multimodal data, especially the fine-grained interaction. Existing works have shown that fully transformer-based models that adopt attention mechanisms to learn in-layer cross-model interaction can demonstrate impressive performance on various cross-modal downstream tasks. However, they ignored that the semantic information of the different modals at the same layer was not uniform, which leads to the cross-modal interaction collapsing into a limited multi-modal semantic information interaction. In this work, we propose the UNIMO-3 model, which has the capacity to simultaneously learn the multimodal in-layer interaction and cross-layer interaction. UNIMO-3 model can establish effective connections between different layers in a cross-modal encoder, and adaptively capture the interaction between two modalities at different levels. The experimental results show that our model achieves state-of-the-art performance in various downstream tasks, and through ablation study can prove that effective cross-layer learning improves the model's ability of multimodal representation.
Granular conditional entropy-based attribute reduction for partially labeled data with proxy labels
Gao, Can, Zhoua, Jie, Miao, Duoqian, Yue, Xiaodong, Wan, Jun
Attribute reduction is one of the most important research topics in the theory of rough sets, and many rough sets-based attribute reduction methods have thus been presented. However, most of them are specifically designed for dealing with either labeled data or unlabeled data, while many real-world applications come in the form of partial supervision. In this paper, we propose a rough sets-based semi-supervised attribute reduction method for partially labeled data. Particularly, with the aid of prior class distribution information about data, we first develop a simple yet effective strategy to produce the proxy labels for unlabeled data. Then the concept of information granularity is integrated into the information-theoretic measure, based on which, a novel granular conditional entropy measure is proposed, and its monotonicity is proved in theory. Furthermore, a fast heuristic algorithm is provided to generate the optimal reduct of partially labeled data, which could accelerate the process of attribute reduction by removing irrelevant examples and excluding redundant attributes simultaneously. Extensive experiments conducted on UCI data sets demonstrate that the proposed semi-supervised attribute reduction method is promising and even compares favourably with the supervised methods on labeled data and unlabeled data with true labels in terms of classification performance.