Plotting

 Gao, Bowen


PharmAgents: Building a Virtual Pharma with Large Language Model Agents

arXiv.org Artificial Intelligence

The discovery of novel small molecule drugs remains a critical scientific challenge with far-reaching implications for treating diseases and advancing human health. Traditional drug development--especially for small molecule therapeutics--is a highly complex, resource-intensive, and time-consuming process that requires multidisciplinary collaboration. Recent breakthroughs in artificial intelligence (AI), particularly the rise of large language models (LLMs), present a transformative opportunity to streamline and accelerate this process. In this paper, we introduce PharmAgents, a virtual pharmaceutical ecosystem driven by LLM-based multi-agent collaboration. PharmAgents simulates the full drug discovery workflow--from target discovery to preclinical evaluation--by integrating explainable, LLM-driven agents equipped with specialized machine learning models and computational tools. Through structured knowledge exchange and automated optimization, PharmAgents identifies potential therapeutic targets, discovers promising lead compounds, enhances binding affinity and key molecular properties, and performs in silico analyses of toxicity and synthetic feasibility. Additionally, the system supports interpretability, agent interaction, and self-evolvement, enabling it to refine future drug designs based on prior experience. By showcasing the potential of LLM-powered multi-agent systems in drug discovery, this work establishes a new paradigm for autonomous, explainable, and scalable pharmaceutical research, with future extensions toward comprehensive drug lifecycle management.


SIU: A Million-Scale Structural Small Molecule-Protein Interaction Dataset for Unbiased Bioactivity Prediction

arXiv.org Artificial Intelligence

Small molecules play a pivotal role in modern medicine, and scrutinizing their interactions with protein targets is essential for the discovery and development of novel, life-saving therapeutics. The term "bioactivity" encompasses various biological effects resulting from these interactions, including both binding and functional responses. The magnitude of bioactivity dictates the therapeutic or toxic pharmacological outcomes of small molecules, rendering accurate bioactivity prediction crucial for the development of safe and effective drugs. However, existing structural datasets of small molecule-protein interactions are often limited in scale and lack systematically organized bioactivity labels, thereby impeding our understanding of these interactions and precise bioactivity prediction. In this study, we introduce a comprehensive dataset of small molecule-protein interactions, consisting of over a million binding structures, each annotated with real biological activity labels. This dataset is designed to facilitate unbiased bioactivity prediction. We evaluated several classical models on this dataset, and the results demonstrate that the task of unbiased bioactivity prediction is challenging yet essential.


From Theory to Therapy: Reframing SBDD Model Evaluation via Practical Metrics

arXiv.org Artificial Intelligence

Recent advancements in structure-based drug design (SBDD) have significantly enhanced the efficiency and precision of drug discovery by generating molecules tailored to bind specific protein pockets. Despite these technological strides, their practical application in real-world drug development remains challenging due to the complexities of synthesizing and testing these molecules. The reliability of the Vina docking score, the current standard for assessing binding abilities, is increasingly questioned due to its susceptibility to overfitting. To address these limitations, we propose a comprehensive evaluation framework that includes assessing the similarity of generated molecules to known active compounds, introducing a virtual screening-based metric for practical deployment capabilities, and re-evaluating binding affinity more rigorously. Our experiments reveal that while current SBDD models achieve high Vina scores, they fall short in practical usability metrics, highlighting a significant gap between theoretical predictions and real-world applicability. Our proposed metrics and dataset aim to bridge this gap, enhancing the practical applicability of future SBDD models and aligning them more closely with the needs of pharmaceutical research and development.


Multi-level Interaction Modeling for Protein Mutational Effect Prediction

arXiv.org Artificial Intelligence

Protein-protein interactions are central mediators in many biological processes. Accurately predicting the effects of mutations on interactions is crucial for guiding the modulation of these interactions, thereby playing a significant role in therapeutic development and drug discovery. Mutations generally affect interactions hierarchically across three levels: mutated residues exhibit different sidechain conformations, which lead to changes in the backbone conformation, eventually affecting the binding affinity between proteins. However, existing methods typically focus only on sidechain-level interaction modeling, resulting in suboptimal predictions. In this work, we propose a self-supervised multi-level pre-training framework, ProMIM, to fully capture all three levels of interactions with well-designed pretraining objectives. Experiments show ProMIM outperforms all the baselines on the standard benchmark, especially on mutations where significant changes in backbone conformations may occur. In addition, leading results from zero-shot evaluations for SARS-CoV-2 mutational effect prediction and antibody optimization underscore the potential of ProMIM as a powerful next-generation tool for developing novel therapeutic approaches and new drugs.


Rethinking Specificity in SBDD: Leveraging Delta Score and Energy-Guided Diffusion

arXiv.org Artificial Intelligence

In the field of Structure-based Drug Design (SBDD), deep learning-based generative models have achieved outstanding performance in terms of docking score. However, further study shows that the existing molecular generative methods and docking scores both have lacked consideration in terms of specificity, which means that generated molecules bind to almost every protein pocket with high affinity. To address this, we introduce the Delta Score, a new metric for evaluating the specificity of molecular binding. To further incorporate this insight for generation, we develop an innovative energy-guided approach using contrastive learning, with active compounds as decoys, to direct generative models toward creating molecules with high specificity. Our empirical results show that this method not only enhances the delta score but also maintains or improves traditional docking scores, successfully bridging the gap between SBDD and real-world needs.


Delta Score: Improving the Binding Assessment of Structure-Based Drug Design Methods

arXiv.org Artificial Intelligence

Structure-based drug design (SBDD) stands at the forefront of drug discovery, emphasizing the creation of molecules that target specific binding pockets. Recent advances in this area have witnessed the adoption of deep generative models and geometric deep learning techniques, modeling SBDD as a conditional generation task where the target structure serves as context. Historically, evaluation of these models centered on docking scores, which quantitatively depict the predicted binding affinity between a molecule and its target pocket. Though state-of-the-art models purport that a majority of their generated ligands exceed the docking score of ground truth ligands in test sets, it begs the question: Do these scores align with real-world biological needs? In this paper, we introduce the delta score, a novel evaluation metric grounded in tangible pharmaceutical requisites. Our experiments reveal that molecules produced by current deep generative models significantly lag behind ground truth reference ligands when assessed with the delta score. This novel metric not only complements existing benchmarks but also provides a pivotal direction for subsequent research in the domain.


DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening

arXiv.org Artificial Intelligence

Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applications. Recent supervised learning approaches using scoring functions for binding-affinity prediction, although promising, have not yet surpassed docking methods due to their strong dependency on limited data with reliable binding-affinity labels. In this paper, we propose a novel contrastive learning framework, DrugCLIP, by reformulating virtual screening as a dense retrieval task and employing contrastive learning to align representations of binding protein pockets and molecules from a large quantity of pairwise data without explicit binding-affinity scores. We also introduce a biological-knowledge inspired data augmentation strategy to learn better protein-molecule representations. Extensive experiments show that DrugCLIP significantly outperforms traditional docking and supervised learning methods on diverse virtual screening benchmarks with highly reduced computation time, especially in zero-shot setting.


UniBriVL: Robust Universal Representation and Generation of Audio Driven Diffusion Models

arXiv.org Artificial Intelligence

Multimodal large models have been recognized for their advantages in various performance and downstream tasks. The development of these models is crucial towards achieving general artificial intelligence in the future. In this paper, we propose a novel universal language representation learning method called UniBriVL, which is based on Bridging-Vision-and-Language (BriVL). Universal BriVL embeds audio, image, and text into a shared space, enabling the realization of various multimodal applications. Our approach addresses major challenges in robust language (both text and audio) representation learning and effectively captures the correlation between audio and image. Additionally, we demonstrate the qualitative evaluation of the generated images from UniBriVL, which serves to highlight the potential of our approach in creating images from audio. Overall, our experimental results demonstrate the efficacy of UniBriVL in downstream tasks and its ability to choose appropriate images from audio. The proposed approach has the potential for various applications such as speech recognition, music signal processing, and captioning systems.


Exploring Efficient-Tuned Learning Audio Representation Method from BriVL

arXiv.org Artificial Intelligence

Recently, researchers have gradually realized that in some cases, the self-supervised pre-training on large-scale Internet data is better than that of high-quality/manually labeled data sets, and multimodal/large models are better than single or bimodal/small models. In this paper, we propose a robust audio representation learning method WavBriVL based on Bridging-Vision-and-Language (BriVL). WavBriVL projects audio, image and text into a shared embedded space, so that multi-modal applications can be realized. We demonstrate the qualitative evaluation of the image generated from WavBriVL as a shared embedded space, with the main purposes of this paper:(1) Learning the correlation between audio and image;(2) Explore a new way of image generation, that is, use audio to generate pictures. Experimental results show that this method can effectively generate appropriate images from audio.


Coarse-to-Fine: a Hierarchical Diffusion Model for Molecule Generation in 3D

arXiv.org Artificial Intelligence

Generating desirable molecular structures in 3D is a fundamental problem for drug discovery. Despite the considerable progress we have achieved, existing methods usually generate molecules in atom resolution and ignore intrinsic local structures such as rings, which leads to poor quality in generated structures, especially when generating large molecules. Fragment-based molecule generation is a promising strategy, however, it is nontrivial to be adapted for 3D non-autoregressive generations because of the combinational optimization problems. In this paper, we utilize a coarse-to-fine strategy to tackle this problem, in which a Hierarchical Diffusion-based model (i.e.~HierDiff) is proposed to preserve the validity of local segments without relying on autoregressive modeling. Specifically, HierDiff first generates coarse-grained molecule geometries via an equivariant diffusion process, where each coarse-grained node reflects a fragment in a molecule. Then the coarse-grained nodes are decoded into fine-grained fragments by a message-passing process and a newly designed iterative refined sampling module. Lastly, the fine-grained fragments are then assembled to derive a complete atomic molecular structure. Extensive experiments demonstrate that HierDiff consistently improves the quality of molecule generation over existing methods