Goto

Collaborating Authors

 Gantayat, Neelamadhav


AutoMixer for Improved Multivariate Time-Series Forecasting on Business and IT Observability Data

arXiv.org Artificial Intelligence

The efficiency of business processes relies on business key performance indicators (Biz-KPIs), that can be negatively impacted by IT failures. Business and IT Observability (BizITObs) data fuses both Biz-KPIs and IT event channels together as multivariate time series data. Forecasting Biz-KPIs in advance can enhance efficiency and revenue through proactive corrective measures. However, BizITObs data generally exhibit both useful and noisy inter-channel interactions between Biz-KPIs and IT events that need to be effectively decoupled. This leads to suboptimal forecasting performance when existing multivariate forecasting models are employed. To address this, we introduce AutoMixer, a time-series Foundation Model (FM) approach, grounded on the novel technique of channel-compressed pretrain and finetune workflows. AutoMixer leverages an AutoEncoder for channel-compressed pretraining and integrates it with the advanced TSMixer model for multivariate time series forecasting. This fusion greatly enhances the potency of TSMixer for accurate forecasts and also generalizes well across several downstream tasks. Through detailed experiments and dashboard analytics, we show AutoMixer's capability to consistently improve the Biz-KPI's forecasting accuracy (by 11-15\%) which directly translates to actionable business insights.


Democratization of Deep Learning Using DARVIZ

AAAI Conferences

With an abundance of research papers in deep learning, adoption and reproducibility of existing works becomes a challenge. To make a DL developer life easy, we propose a novel system, DARVIZ, to visually design a DL model using a drag-and-drop framework in an platform agnostic manner. The code could be automatically generated in both Caffe and Keras. DARVIZ could import (i) any existing Caffe code, or (ii) a research paper containing a DL design; extract the design, and present it in visual editor.


Hi, How Can I Help You?: Automating Enterprise IT Support Help Desks

AAAI Conferences

Question answering is one of the primary challenges of natural language understanding. In realizing such a system, providing complex long answers to questions is a challenging task as opposed to factoid answering as the former needs context disambiguation. The different methods explored in the literature can be broadly classified into three categories namely: 1) classification based, 2) knowledge graph based and 3) retrieval based. Individually, none of them address the need of an enterprise wide assistance system for an IT support and maintenance domain. In this domain, the variance of answers is large ranging from factoid to structured operating procedures; the knowledge is present across heterogeneous data sources like application specific documentation, ticket management systems and any single technique for a general purpose assistance is unable to scale for such a landscape. To address this, we have built a cognitive platform with capabilities adopted for this domain. Further, we have built a general purpose question answering system leveraging the platform that can be instantiated for multiple products, technologies in the support domain. The system uses a novel hybrid answering model that orchestrates across a deep learning classifier, a knowledge graph based context disambiguation module and a sophisticated bag-of-words search system. This orchestration performs context switching for a provided question and also does a smooth hand-off of the question to a human expert if none of the automated techniques can provide a confident answer. This system has been deployed across 675 internal enterprise IT support and maintenance projects.


Agent Assist: Automating Enterprise IT Support Help Desks

AAAI Conferences

In this paper, we present Agent Assist, a virtual assistant which helps IT support staff to resolve tickets faster. It is essentially a conversation system which provides procedural and often complex answers to queries. This system can ingest knowledge from various sources like application documentation, ticket management systems and knowledge transfer video recordings. It uses an ensemble of techniques like question classification, knowledge graph based disambiguation, information retrieval, etc., to provide quick and relevant solutions to problems from various technical domains and is currently being used in more than 650 projects within IBM.