Goto

Collaborating Authors

 Gangadharaiah, Rashmi


FairGen: Controlling Sensitive Attributes for Fair Generations in Diffusion Models via Adaptive Latent Guidance

arXiv.org Artificial Intelligence

Text-to-image diffusion models often exhibit biases toward specific demographic groups, such as generating more males than females when prompted to generate images of engineers, raising ethical concerns and limiting their adoption. In this paper, we tackle the challenge of mitigating generation bias towards any target attribute value (e.g., "male" for "gender") in diffusion models while preserving generation quality. We propose FairGen, an adaptive latent guidance mechanism which controls the generation distribution during inference. In FairGen, a latent guidance module dynamically adjusts the diffusion process to enforce specific attributes, while a memory module tracks the generation statistics and steers latent guidance to align with the targeted fair distribution of the attribute values. Further, given the limitations of existing datasets in comprehensively assessing bias in diffusion models, we introduce a holistic bias evaluation benchmark HBE, covering diverse domains and incorporating complex prompts across various applications. Extensive evaluations on HBE and Stable Bias datasets demonstrate that FairGen outperforms existing bias mitigation approaches, achieving substantial bias reduction (e.g., 68.5% gender bias reduction on Stable Diffusion 2). Ablation studies highlight FairGen's ability to flexibly and precisely control generation distribution at any user-specified granularity, ensuring adaptive and targeted bias mitigation.


Constrained Decoding with Speculative Lookaheads

arXiv.org Artificial Intelligence

Constrained decoding with lookahead heuristics (CDLH) is a highly effective method for aligning LLM generations to human preferences. However, the extensive lookahead roll-out operations for each generated token makes CDLH prohibitively expensive, resulting in low adoption in practice. In contrast, common decoding strategies such as greedy decoding are extremely efficient, but achieve very low constraint satisfaction. We propose constrained decoding with speculative lookaheads (CDSL), a technique that significantly improves upon the inference efficiency of CDLH without experiencing the drastic performance reduction seen with greedy decoding. CDSL is motivated by the recently proposed idea of speculative decoding that uses a much smaller draft LLM for generation and a larger target LLM for verification. In CDSL, the draft model is used to generate lookaheads which is verified by a combination of target LLM and task-specific reward functions. This process accelerates decoding by reducing the computational burden while maintaining strong performance. We evaluate CDSL in two constraint decoding tasks with three LLM families and achieve 2.2x to 12.15x speedup over CDLH without significant performance reduction.


Bring Your Own KG: Self-Supervised Program Synthesis for Zero-Shot KGQA

arXiv.org Artificial Intelligence

We present BYOKG, a universal question-answering (QA) system that can operate on any knowledge graph (KG), requires no human-annotated training data, and can be ready to use within a day -- attributes that are out-of-scope for current KGQA systems. BYOKG draws inspiration from the remarkable ability of humans to comprehend information present in an unseen KG through exploration -- starting at random nodes, inspecting the labels of adjacent nodes and edges, and combining them with their prior world knowledge. In BYOKG, exploration leverages an LLM-backed symbolic agent that generates a diverse set of query-program exemplars, which are then used to ground a retrieval-augmented reasoning procedure to predict programs for arbitrary questions. BYOKG is effective over both small- and large-scale graphs, showing dramatic gains in QA accuracy over a zero-shot baseline of 27.89 and 58.02 F1 on GrailQA and MetaQA, respectively. On GrailQA, we further show that our unsupervised BYOKG outperforms a supervised in-context learning method, demonstrating the effectiveness of exploration. Lastly, we find that performance of BYOKG reliably improves with continued exploration as well as improvements in the base LLM, notably outperforming a state-of-the-art fine-tuned model by 7.08 F1 on a sub-sampled zero-shot split of GrailQA.


User Persona Identification and New Service Adaptation Recommendation

arXiv.org Artificial Intelligence

Providing a personalized user experience on information dense webpages helps users in reaching their end-goals sooner. We explore an automated approach to identifying user personas by leveraging high dimensional trajectory information from user sessions on webpages. While neural collaborative filtering (NCF) approaches pay little attention to token semantics, our method introduces SessionBERT, a Transformer-backed language model trained from scratch on the masked language modeling (mlm) objective for user trajectories (pages, metadata, billing in a session) aiming to capture semantics within them. Our results show that representations learned through SessionBERT are able to consistently outperform a BERT-base model providing a 3% and 1% relative improvement in F1-score for predicting page links and next services. We leverage SessionBERT and extend it to provide recommendations (top-5) for the next most-relevant services that a user would be likely to use. We achieve a HIT@5 of 58% from our recommendation model.


Document-Level Supervision for Multi-Aspect Sentiment Analysis Without Fine-grained Labels

arXiv.org Artificial Intelligence

Aspect-based sentiment analysis (ABSA) is a widely studied topic, most often trained through supervision from human annotations of opinionated texts. These fine-grained annotations include identifying aspects towards which a user expresses their sentiment, and their associated polarities (aspect-based sentiments). Such fine-grained annotations can be expensive and often infeasible to obtain in real-world settings. There is, however, an abundance of scenarios where user-generated text contains an overall sentiment, such as a rating of 1-5 in user reviews or user-generated feedback, which may be leveraged for this task. In this paper, we propose a VAE-based topic modeling approach that performs ABSA using document-level supervision and without requiring fine-grained labels for either aspects or sentiments. Our approach allows for the detection of multiple aspects in a document, thereby allowing for the possibility of reasoning about how sentiment expressed through multiple aspects comes together to form an observable overall document-level sentiment. We demonstrate results on two benchmark datasets from two different domains, significantly outperforming a state-of-the-art baseline.


Contextual Dynamic Prompting for Response Generation in Task-oriented Dialog Systems

arXiv.org Artificial Intelligence

Response generation is one of the critical components in task-oriented dialog systems. Existing studies have shown that large pre-trained language models can be adapted to this task. The typical paradigm of adapting such extremely large language models would be by fine-tuning on the downstream tasks which is not only time-consuming but also involves significant resources and access to fine-tuning data. Prompting (Schick and Sch\"utze, 2020) has been an alternative to fine-tuning in many NLP tasks. In our work, we explore the idea of using prompting for response generation in task-oriented dialog systems. Specifically, we propose an approach that performs contextual dynamic prompting where the prompts are learnt from dialog contexts. We aim to distill useful prompting signals from the dialog context. On experiments with MultiWOZ 2.2 dataset (Zang et al., 2020), we show that contextual dynamic prompts improve response generation in terms of combined score (Mehri et al., 2019) by 3 absolute points, and a massive 20 points when dialog states are incorporated. Furthermore, human annotation on these conversations found that agents which incorporate context were preferred over agents with vanilla prefix-tuning.


Privacy Adhering Machine Un-learning in NLP

arXiv.org Artificial Intelligence

Regulations introduced by General Data Protection Regulation (GDPR) in the EU or California Consumer Privacy Act (CCPA) in the US have included provisions on the \textit{right to be forgotten} that mandates industry applications to remove data related to an individual from their systems. In several real world industry applications that use Machine Learning to build models on user data, such mandates require significant effort both in terms of data cleansing as well as model retraining while ensuring the models do not deteriorate in prediction quality due to removal of data. As a result, continuous removal of data and model retraining steps do not scale if these applications receive such requests at a very high frequency. Recently, a few researchers proposed the idea of \textit{Machine Unlearning} to tackle this challenge. Despite the significant importance of this task, the area of Machine Unlearning is under-explored in Natural Language Processing (NLP) tasks. In this paper, we explore the Unlearning framework on various GLUE tasks \cite{Wang:18}, such as, QQP, SST and MNLI. We propose computationally efficient approaches (SISA-FC and SISA-A) to perform \textit{guaranteed} Unlearning that provides significant reduction in terms of both memory (90-95\%), time (100x) and space consumption (99\%) in comparison to the baselines while keeping model performance constant.


Zero-Shot Learning for Joint Intent and Slot Labeling

arXiv.org Artificial Intelligence

It is expensive and difficult to obtain the large number of sentence-level intent and token-level slot label annotations required to train neural network (NN)-based Natural Language Understanding (NLU) components of task-oriented dialog systems, especially for the many real world tasks that have a large and growing number of intents and slot types. While zero shot learning approaches that require no labeled examples -- only features and auxiliary information -- have been proposed only for slot labeling, we show that one can profitably perform joint zero-shot intent classification and slot labeling. We demonstrate the value of capturing dependencies between intents and slots, and between different slots in an utterance in the zero shot setting. We describe NN architectures that translate between word and sentence embedding spaces, and demonstrate that these modifications are required to enable zero shot learning for this task. We show a substantial improvement over strong baselines and explain the intuition behind each architectural modification through visualizations and ablation studies.