Goto

Collaborating Authors

 Gan, Wensheng


Graph Diffusion Network for Drug-Gene Prediction

arXiv.org Artificial Intelligence

Predicting drug-gene associations is crucial for drug development and disease treatment. While graph neural networks (GNN) have shown effectiveness in this task, they face challenges with data sparsity and efficient contrastive learning implementation. We introduce a graph diffusion network for drug-gene prediction (GDNDGP), a framework that addresses these limitations through two key innovations. First, it employs meta-path-based homogeneous graph learning to capture drug-drug and gene-gene relationships, ensuring similar entities share embedding spaces. Second, it incorporates a parallel diffusion network that generates hard negative samples during training, eliminating the need for exhaustive negative sample retrieval. Our model achieves superior performance on the DGIdb 4.0 dataset and demonstrates strong generalization capability on tripartite drug-gene-disease networks. Results show significant improvements over existing methods in drug-gene prediction tasks, particularly in handling complex heterogeneous relationships. The source code is publicly available at https://github.com/csjywu1/GDNDGP.


Towards More Accurate Full-Atom Antibody Co-Design

arXiv.org Artificial Intelligence

Antibody co-design represents a critical frontier in drug development, where accurate prediction of both 1D sequence and 3D structure of complementarity-determining regions (CDRs) is essential for targeting specific epitopes. Despite recent advances in equivariant graph neural networks for antibody design, current approaches often fall short in capturing the intricate interactions that govern antibody-antigen recognition and binding specificity. In this work, we present Igformer, a novel end-to-end framework that addresses these limitations through innovative modeling of antibody-antigen binding interfaces. Our approach refines the inter-graph representation by integrating personalized propagation with global attention mechanisms, enabling comprehensive capture of the intricate interplay between local chemical interactions and global conformational dependencies that characterize effective antibody-antigen binding. Through extensive validation on epitope-binding CDR design and structure prediction tasks, Igformer demonstrates significant improvements over existing methods, suggesting that explicit modeling of multi-scale residue interactions can substantially advance computational antibody design for therapeutic applications.


Mixture of Experts (MoE): A Big Data Perspective

arXiv.org Artificial Intelligence

As the era of big data arrives, traditional artificial intelligence algorithms have difficulty processing the demands of massive and diverse data. Mixture of experts (MoE) has shown excellent performance and broad application prospects. This paper provides an in-depth review and analysis of the latest progress in this field from multiple perspectives, including the basic principles, algorithmic models, key technical challenges, and application practices of MoE. First, we introduce the basic concept of MoE and its core idea and elaborate on its advantages over traditional single models. Then, we discuss the basic architecture of MoE and its main components, including the gating network, expert networks, and learning algorithms. Next, we review the applications of MoE in addressing key technical issues in big data. For each challenge, we provide specific MoE solutions and their innovations. Furthermore, we summarize the typical use cases of MoE in various application domains. This fully demonstrates the powerful capability of MoE in big data processing. We also analyze the advantages of MoE in big data environments. Finally, we explore the future development trends of MoE. We believe that MoE will become an important paradigm of artificial intelligence in the era of big data. In summary, this paper systematically elaborates on the principles, techniques, and applications of MoE in big data processing, providing theoretical and practical references to further promote the application of MoE in real scenarios.


ADKGD: Anomaly Detection in Knowledge Graphs with Dual-Channel Training

arXiv.org Artificial Intelligence

In the current development of large language models (LLMs), it is important to ensure the accuracy and reliability of the underlying data sources. LLMs are critical for various applications, but they often suffer from hallucinations and inaccuracies due to knowledge gaps in the training data. Knowledge graphs (KGs), as a powerful structural tool, could serve as a vital external information source to mitigate the aforementioned issues. By providing a structured and comprehensive understanding of real-world data, KGs enhance the performance and reliability of LLMs. However, it is common that errors exist in KGs while extracting triplets from unstructured data to construct KGs. This could lead to degraded performance in downstream tasks such as question-answering and recommender systems. Therefore, anomaly detection in KGs is essential to identify and correct these errors. This paper presents an anomaly detection algorithm in knowledge graphs with dual-channel learning (ADKGD). ADKGD leverages a dual-channel learning approach to enhance representation learning from both the entity-view and triplet-view perspectives. Furthermore, using a cross-layer approach, our framework integrates internal information aggregation and context information aggregation. We introduce a kullback-leibler (KL)-loss component to improve the accuracy of the scoring function between the dual channels. To evaluate ADKGD's performance, we conduct empirical studies on three real-world KGs: WN18RR, FB15K, and NELL-995. Experimental results demonstrate that ADKGD outperforms the state-of-the-art anomaly detection algorithms. The source code and datasets are publicly available at https://github.com/csjywu1/ADKGD.


Graph Contrastive Learning on Multi-label Classification for Recommendations

arXiv.org Artificial Intelligence

In business analysis, providing effective recommendations is essential for enhancing company profits. The utilization of graph-based structures, such as bipartite graphs, has gained popularity for their ability to analyze complex data relationships. Link prediction is crucial for recommending specific items to users. Traditional methods in this area often involve identifying patterns in the graph structure or using representational techniques like graph neural networks (GNNs). However, these approaches encounter difficulties as the volume of data increases. To address these challenges, we propose a model called Graph Contrastive Learning for Multi-label Classification (MCGCL). MCGCL leverages contrastive learning to enhance recommendation effectiveness. The model incorporates two training stages: a main task and a subtask. The main task is holistic user-item graph learning to capture user-item relationships. The homogeneous user-user (item-item) subgraph is constructed to capture user-user and item-item relationships in the subtask. We assessed the performance using real-world datasets from Amazon Reviews in multi-label classification tasks. Comparative experiments with state-of-the-art methods confirm the effectiveness of MCGCL, highlighting its potential for improving recommendation systems.


Large Language Models for Medicine: A Survey

arXiv.org Artificial Intelligence

To address challenges in the digital economy's landscape of digital intelligence, large language models (LLMs) have been developed. Improvements in computational power and available resources have significantly advanced LLMs, allowing their integration into diverse domains for human life. Medical LLMs are essential application tools with potential across various medical scenarios. In this paper, we review LLM developments, focusing on the requirements and applications of medical LLMs. We provide a concise overview of existing models, aiming to explore advanced research directions and benefit researchers for future medical applications. We emphasize the advantages of medical LLMs in applications, as well as the challenges encountered during their development. Finally, we suggest directions for technical integration to mitigate challenges and potential research directions for the future of medical LLMs, aiming to meet the demands of the medical field better.


Large Language Models for Education: A Survey

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has a profound impact on traditional education. In recent years, large language models (LLMs) have been increasingly used in various applications such as natural language processing, computer vision, speech recognition, and autonomous driving. LLMs have also been applied in many fields, including recommendation, finance, government, education, legal affairs, and finance. As powerful auxiliary tools, LLMs incorporate various technologies such as deep learning, pre-training, fine-tuning, and reinforcement learning. The use of LLMs for smart education (LLMEdu) has been a significant strategic direction for countries worldwide. While LLMs have shown great promise in improving teaching quality, changing education models, and modifying teacher roles, the technologies are still facing several challenges. In this paper, we conduct a systematic review of LLMEdu, focusing on current technologies, challenges, and future developments. We first summarize the current state of LLMEdu and then introduce the characteristics of LLMs and education, as well as the benefits of integrating LLMs into education. We also review the process of integrating LLMs into the education industry, as well as the introduction of related technologies. Finally, we discuss the challenges and problems faced by LLMEdu, as well as prospects for future optimization of LLMEdu.


Data Scarcity in Recommendation Systems: A Survey

arXiv.org Artificial Intelligence

The prevalence of online content has led to the widespread adoption of recommendation systems (RSs), which serve diverse purposes such as news, advertisements, and e-commerce recommendations. Despite their significance, data scarcity issues have significantly impaired the effectiveness of existing RS models and hindered their progress. To address this challenge, the concept of knowledge transfer, particularly from external sources like pre-trained language models, emerges as a potential solution to alleviate data scarcity and enhance RS development. However, the practice of knowledge transfer in RSs is intricate. Transferring knowledge between domains introduces data disparities, and the application of knowledge transfer in complex RS scenarios can yield negative consequences if not carefully designed. Therefore, this article contributes to this discourse by addressing the implications of data scarcity on RSs and introducing various strategies, such as data augmentation, self-supervised learning, transfer learning, broad learning, and knowledge graph utilization, to mitigate this challenge. Furthermore, it delves into the challenges and future direction within the RS domain, offering insights that are poised to facilitate the development and implementation of robust RSs, particularly when confronted with data scarcity. We aim to provide valuable guidance and inspiration for researchers and practitioners, ultimately driving advancements in the field of RS.


Large Language Models in Law: A Survey

arXiv.org Artificial Intelligence

The advent of artificial intelligence (AI) has significantly impacted the traditional judicial industry. Moreover, recently, with the development of AI-generated content (AIGC), AI and law have found applications in various domains, including image recognition, automatic text generation, and interactive chat. With the rapid emergence and growing popularity of large models, it is evident that AI will drive transformation in the traditional judicial industry. However, the application of legal large language models (LLMs) is still in its nascent stage. Several challenges need to be addressed. In this paper, we aim to provide a comprehensive survey of legal LLMs. We not only conduct an extensive survey of LLMs, but also expose their applications in the judicial system. We first provide an overview of AI technologies in the legal field and showcase the recent research in LLMs. Then, we discuss the practical implementation presented by legal LLMs, such as providing legal advice to users and assisting judges during trials. In addition, we explore the limitations of legal LLMs, including data, algorithms, and judicial practice. Finally, we summarize practical recommendations and propose future development directions to address these challenges.


Multimodal Large Language Models: A Survey

arXiv.org Artificial Intelligence

The exploration of multimodal language models integrates multiple data types, such as images, text, language, audio, and other heterogeneity. While the latest large language models excel in text-based tasks, they often struggle to understand and process other data types. Multimodal models address this limitation by combining various modalities, enabling a more comprehensive understanding of diverse data. This paper begins by defining the concept of multimodal and examining the historical development of multimodal algorithms. Furthermore, we introduce a range of multimodal products, focusing on the efforts of major technology companies. A practical guide is provided, offering insights into the technical aspects of multimodal models. Moreover, we present a compilation of the latest algorithms and commonly used datasets, providing researchers with valuable resources for experimentation and evaluation. Lastly, we explore the applications of multimodal models and discuss the challenges associated with their development. By addressing these aspects, this paper aims to facilitate a deeper understanding of multimodal models and their potential in various domains.