Goto

Collaborating Authors

 Gan, Jianwen


Clustering ensemble algorithm with high-order consistency learning

arXiv.org Artificial Intelligence

Most of the research on clustering ensemble focuses on designing practical consistency learning algorithms.To solve the problems that the quality of base clusters varies and the low-quality base clusters have an impact on the performance of the clustering ensemble, from the perspective of data mining, the intrinsic connections of data were mined based on the base clusters, and a high-order information fusion algorithm was proposed to represent the connections between data from different dimensions, namely Clustering Ensemble with High-order Consensus learning (HCLCE). Firstly, each high-order information was fused into a new structured consistency matrix. Then, the obtained multiple consistency matrices were fused together. Finally, multiple information was fused into a consistent result. Experimental results show that LCLCE algorithm has the clustering accuracy improved by an average of 7.22%, and the Normalized Mutual Information (NMI) improved by an average of 9.19% compared with the suboptimal Locally Weighted Evidence Accumulation (LWEA) algorithm. It can be seen that the proposed algorithm can obtain better clustering results compared with clustering ensemble algorithms and using one information alone.


Unsupervised Feature Selection Algorithm Based on Graph Filtering and Self-representation

arXiv.org Artificial Intelligence

Aiming at the problem that existing methods could not fully capture the intrinsic structure of data without considering the higher-order neighborhood information of the data, we proposed an unsupervised feature selection algorithm based on graph filtering and self-representation. Firstly,a higher-order graph filter was applied to the data to obtain its smooth representation,and a regularizer was designed to combine the higher-order graph information for the self-representation matrix learning to capture the intrinsic structure of the data. Secondly,l2,1 norm was used to reconstruct the error term and feature selection matrix to enhance the robustness and row sparsity of the model to select the discriminant features. Finally, an iterative algorithm was applied to effectively solve the proposed objective function and simulation experiments were carried out to verify the effectiveness of the proposed algorithm.


Unsupervised Feature Selection Algorithm Based on Dual Manifold Re-ranking

arXiv.org Artificial Intelligence

High-dimensional data is commonly encountered in numerous data analysis tasks. Feature selection techniques aim to identify the most representative features from the original high-dimensional data. Due to the absence of class label information, it is significantly more challenging to select appropriate features in unsupervised learning scenarios compared to supervised ones. Traditional unsupervised feature selection methods typically score the features of samples based on certain criteria, treating samples indiscriminately. However, these approaches fail to fully capture the internal structure of the data. The importance of different samples should vary, and there is a dual relationship between the weight of samples and features that will influence each other. Therefore, an unsupervised feature selection algorithm based on dual manifold re-ranking (DMRR) is proposed in this paper. Different similarity matrices are constructed to depict the manifold structures among samples, between samples and features, and among features themselves. Then, manifold re-ranking is performed by combining the initial scores of samples and features. By comparing DMRR with three original unsupervised feature selection algorithms and two unsupervised feature selection post-processing algorithms, experimental results confirm that the importance information of different samples and the dual relationship between sample and feature are beneficial for achieving better feature selection.