Goto

Collaborating Authors

 Gallicchio, Claudio


Ray-Tracing for Conditionally Activated Neural Networks

arXiv.org Artificial Intelligence

A BSTRACT In this paper, we introduce a novel architecture for conditionally activated neural networks combining a hierarchical construction of multiple Mixture of Experts (MoEs) layers with a sampling mechanism that progressively converges to an optimized configuration of expert activation. This methodology enables the dynamic unfolding of the network's architecture, facilitating efficient path-specific training. Experimental results demonstrate that this approach achieves competitive accuracy compared to conventional baselines while significantly reducing the parameter count required for inference. The approach we propose implements a neural network where blocks (experts) are stacked over multiple layers. By expressing each block's output as the expected firing rate of a stochastic calculation path, we can simultaneously solve the inference and the selective activation problems. Importantly, since we model every block's output to be its expected activation rate, initiating a computational path from the input nodes or from within a block in the middle of the network will yield comparable results, allowing for a variety of new computational approaches, balancing the width-versus depth-first paradigm.


On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are models that leverage the graph structure to transmit information between nodes, typically through the message-passing operation. While widely successful, this approach is well known to suffer from the over-smoothing and over-squashing phenomena, which result in representational collapse as the number of layers increases and insensitivity to the information contained at distant and poorly connected nodes, respectively. In this paper, we present a unified view of these problems through the lens of vanishing gradients, using ideas from linear control theory for our analysis. We propose an interpretation of GNNs as recurrent models and empirically demonstrate that a simple state-space formulation of a GNN effectively alleviates over-smoothing and over-squashing at no extra trainable parameter cost. Further, we show theoretically and empirically that (i) GNNs are by design prone to extreme gradient vanishing even after a few layers; (ii) Over-smoothing is directly related to the mechanism causing vanishing gradients; (iii) Over-squashing is most easily alleviated by a combination of graph rewiring and vanishing gradient mitigation. We believe our work will help bridge the gap between the recurrent and graph neural network literature and will unlock the design of new deep and performant GNNs.


GRAMA: Adaptive Graph Autoregressive Moving Average Models

arXiv.org Artificial Intelligence

Graph State Space Models (SSMs) have recently been introduced to enhance Graph Neural Networks (GNNs) in modeling long-range interactions. Despite their success, existing methods either compromise on permutation equivariance or limit their focus to pairwise interactions rather than sequences. Building on the connection between Autoregressive Moving Average (ARMA) and SSM, in this paper, we introduce GRAMA, a Graph Adaptive method based on a learnable Autoregressive Moving Average (ARMA) framework that addresses these limitations. By transforming from static to sequential graph data, GRAMA leverages the strengths of the ARMA framework, while preserving permutation equivariance. Moreover, GRAMA incorporates a selective attention mechanism for dynamic learning of ARMA coefficients, enabling efficient and flexible long-range information propagation. We also establish theoretical connections between GRAMA and Selective SSMs, providing insights into its ability to capture long-range dependencies. Extensive experiments on 14 synthetic and real-world datasets demonstrate that GRAMA consistently outperforms backbone models and performs competitively with state-of-the-art methods.


Long Range Propagation on Continuous-Time Dynamic Graphs

arXiv.org Artificial Intelligence

Learning Continuous-Time Dynamic Graphs (C-TDGs) requires accurately modeling spatio-temporal information on streams of irregularly sampled events. While many methods have been proposed recently, we find that most message passing-, recurrent- or self-attention-based methods perform poorly on long-range tasks. These tasks require correlating information that occurred "far" away from the current event, either spatially (higher-order node information) or along the time dimension (events occurred in the past). To address long-range dependencies, we introduce Continuous-Time Graph Anti-Symmetric Network (CTAN). Grounded within the ordinary differential equations framework, our method is designed for efficient propagation of information. In this paper, we show how CTAN's (i) long-range modeling capabilities are substantiated by theoretical findings and how (ii) its empirical performance on synthetic long-range benchmarks and real-world benchmarks is superior to other methods. Our results motivate CTAN's ability to propagate long-range information in C-TDGs as well as the inclusion of long-range tasks as part of temporal graph models evaluation.


Injecting Hamiltonian Architectural Bias into Deep Graph Networks for Long-Range Propagation

arXiv.org Artificial Intelligence

The dynamics of information diffusion within graphs is a critical open issue that heavily influences graph representation learning, especially when considering long-range propagation. This calls for principled approaches that control and regulate the degree of propagation and dissipation of information throughout the neural flow. Motivated by this, we introduce (port-)Hamiltonian Deep Graph Networks, a novel framework that models neural information flow in graphs by building on the laws of conservation of Hamiltonian dynamical systems. We reconcile under a single theoretical and practical framework both non-dissipative long-range propagation and non-conservative behaviors, introducing tools from mechanical systems to gauge the equilibrium between the two components. Our approach can be applied to general message-passing architectures, and it provides theoretical guarantees on information conservation in time. Empirical results prove the effectiveness of our port-Hamiltonian scheme in pushing simple graph convolutional architectures to state-of-the-art performance in long-range benchmarks.


Tackling Graph Oversquashing by Global and Local Non-Dissipativity

arXiv.org Artificial Intelligence

A common problem in Message-Passing Neural Networks is oversquashing -- the limited ability to facilitate effective information flow between distant nodes. Oversquashing is attributed to the exponential decay in information transmission as node distances increase. This paper introduces a novel perspective to address oversquashing, leveraging properties of global and local non-dissipativity, that enable the maintenance of a constant information flow rate. Namely, we present SWAN, a uniquely parameterized model GNN with antisymmetry both in space and weight domains, as a means to obtain non-dissipativity. Our theoretical analysis asserts that by achieving these properties, SWAN offers an enhanced ability to transmit information over extended distances. Empirical evaluations on synthetic and real-world benchmarks that emphasize long-range interactions validate the theoretical understanding of SWAN, and its ability to mitigate oversquashing.


Awareness in robotics: An early perspective from the viewpoint of the EIC Pathfinder Challenge "Awareness Inside''

arXiv.org Artificial Intelligence

Consciousness has been historically a heavily debated topic in engineering, science, and philosophy. On the contrary, awareness had less success in raising the interest of scholars in the past. However, things are changing as more and more researchers are getting interested in answering questions concerning what awareness is and how it can be artificially generated. The landscape is rapidly evolving, with multiple voices and interpretations of the concept being conceived and techniques being developed. The goal of this paper is to summarize and discuss the ones among these voices that are connected with projects funded by the EIC Pathfinder Challenge called "Awareness Inside", a nonrecurring call for proposals within Horizon Europe that was designed specifically for fostering research on natural and synthetic awareness. In this perspective, we dedicate special attention to challenges and promises of applying synthetic awareness in robotics, as the development of mature techniques in this new field is expected to have a special impact on generating more capable and trustworthy embodied systems.


Edge of stability echo state networks

arXiv.org Artificial Intelligence

Echo State Networks (ESNs) are time-series processing models working under the Echo State Property (ESP) principle. The ESP is a notion of stability that imposes an asymptotic fading of the memory of the input. On the other hand, the resulting inherent architectural bias of ESNs may lead to an excessive loss of information, which in turn harms the performance in certain tasks with long short-term memory requirements. With the goal of bringing together the fading memory property and the ability to retain as much memory as possible, in this paper we introduce a new ESN architecture, called the Edge of Stability Echo State Network (ES$^2$N). The introduced ES$^2$N model is based on defining the reservoir layer as a convex combination of a nonlinear reservoir (as in the standard ESN), and a linear reservoir that implements an orthogonal transformation. We provide a thorough mathematical analysis of the introduced model, proving that the whole eigenspectrum of the Jacobian of the ES$^2$N map can be contained in an annular neighbourhood of a complex circle of controllable radius, and exploit this property to demonstrate that the ES$^2$N's forward dynamics evolves close to the edge-of-chaos regime by design. Remarkably, our experimental analysis shows that the newly introduced reservoir model is able to reach the theoretical maximum short-term memory capacity. At the same time, in comparison to standard ESN, ES$^2$N is shown to offer an excellent trade-off between memory and nonlinearity, as well as a significant improvement of performance in autoregressive nonlinear modeling.


Euler State Networks: Non-dissipative Reservoir Computing

arXiv.org Artificial Intelligence

Inspired by the numerical solution of ordinary differential equations, in this paper we propose a novel Reservoir Computing (RC) model, called the Euler State Network (EuSN). The presented approach makes use of forward Euler discretization and antisymmetric recurrent matrices to design reservoir dynamics that are both stable and non-dissipative by construction. Our mathematical analysis shows that the resulting model is biased towards a unitary effective spectral radius and zero local Lyapunov exponents, intrinsically operating near to the edge of stability. Experiments on long-term memory tasks show the clear superiority of the proposed approach over standard RC models in problems requiring effective propagation of input information over multiple time-steps. Furthermore, results on time-series classification benchmarks indicate that EuSN is able to match (or even exceed) the accuracy of trainable Recurrent Neural Networks, while retaining the training efficiency of the RC family, resulting in up to $\approx$ 490-fold savings in computation time and $\approx$ 1750-fold savings in energy consumption.


Anti-Symmetric DGN: a stable architecture for Deep Graph Networks

arXiv.org Artificial Intelligence

Deep Graph Networks (DGNs) currently dominate the research landscape of learning from graphs, due to their efficiency and ability to implement an adaptive message-passing scheme between the nodes. However, DGNs are typically limited in their ability to propagate and preserve long-term dependencies between nodes, i.e., they suffer from the over-squashing phenomena. This reduces their effectiveness, since predictive problems may require to capture interactions at different, and possibly large, radii in order to be effectively solved. In this work, we present Anti-Symmetric Deep Graph Networks (A-DGNs), a framework for stable and non-dissipative DGN design, conceived through the lens of ordinary differential equations. We give theoretical proof that our method is stable and non-dissipative, leading to two key results: long-range information between nodes is preserved, and no gradient vanishing or explosion occurs in training. We empirically validate the proposed approach on several graph benchmarks, showing that A-DGN yields to improved performance and enables to learn effectively even when dozens of layers are used.