Goto

Collaborating Authors

 Gallego, Guillermo


Unsupervised Joint Learning of Optical Flow and Intensity with Event Cameras

arXiv.org Artificial Intelligence

Event cameras rely on motion to obtain information about scene appearance. In other words, for event cameras, motion and appearance are seen both or neither, which are encoded in the output event stream. Previous works consider recovering these two visual quantities as separate tasks, which does not fit with the nature of event cameras and neglects the inherent relations between both tasks. In this paper, we propose an unsupervised learning framework that jointly estimates optical flow (motion) and image intensity (appearance), with a single network. Starting from the event generation model, we newly derive the event-based photometric error as a function of optical flow and image intensity, which is further combined with the contrast maximization framework, yielding a comprehensive loss function that provides proper constraints for both flow and intensity estimation. Exhaustive experiments show that our model achieves state-of-the-art performance for both optical flow (achieves 20% and 25% improvement in EPE and AE respectively in the unsupervised learning category) and intensity estimation (produces competitive results with other baselines, particularly in high dynamic range scenarios). Last but not least, our model achieves shorter inference time than all the other optical flow models and many of the image reconstruction models, while they output only one quantity. Project page: https://github.com/tub-rip/e2fai


Combined Physics and Event Camera Simulator for Slip Detection

arXiv.org Artificial Intelligence

Robot manipulation is a common task in fields like industrial manufacturing. Detecting when objects slip from a robot's grasp is crucial for safe and reliable operation. Event cameras, which register pixel-level brightness changes at high temporal resolution (called ``events''), offer an elegant feature when mounted on a robot's end effector: since they only detect motion relative to their viewpoint, a properly grasped object produces no events, while a slipping object immediately triggers them. To research this feature, representative datasets are essential, both for analytic approaches and for training machine learning models. The majority of current research on slip detection with event-based data is done on real-world scenarios and manual data collection, as well as additional setups for data labeling. This can result in a significant increase in the time required for data collection, a lack of flexibility in scene setups, and a high level of complexity in the repetition of experiments. This paper presents a simulation pipeline for generating slip data using the described camera-gripper configuration in a robot arm, and demonstrates its effectiveness through initial data-driven experiments. The use of a simulator, once it is set up, has the potential to reduce the time spent on data collection, provide the ability to alter the setup at any time, simplify the process of repetition and the generation of arbitrarily large data sets. Two distinct datasets were created and validated through visual inspection and artificial neural networks (ANNs). Visual inspection confirmed photorealistic frame generation and accurate slip modeling, while three ANNs trained on this data achieved high validation accuracy and demonstrated good generalization capabilities on a separate test set, along with initial applicability to real-world data. Project page: https://github.com/tub-rip/event_slip


Event-based Photometric Bundle Adjustment

arXiv.org Artificial Intelligence

Abstract--We tackle the problem of bundle adjustment (i.e., simultaneous refinement of camera poses and scene map) for a purely rotating event camera. Starting from first principles, we formulate the problem as a classical non-linear least squares optimization. The photometric error is defined using the event generation model directly in the camera rotations and the semi-dense scene brightness that triggers the events. We leverage the sparsity of event data to design a tractable Levenberg-Marquardt solver that handles the very large number of variables involved. To the best of our knowledge, our method, which we call Event-based Photometric Bundle Adjustment (EPBA), is the first event-only photometric bundle adjustment method that works on the brightness map directly and exploits the spacetime characteristics of event data, without having to convert events into image-like representations. Comprehensive experiments on both synthetic and real-world datasets demonstrate EPBA's effectiveness in decreasing the photometric error (by up to 90%), yielding results of unparalleled quality. The refined maps reveal details that were hidden using prior state-of-the-art rotation-only estimation methods. The experiments on modern high-resolution event cameras show the applicability of EPBA to panoramic imaging in various scenarios (without map initialization, at multiple resolutions, and in combination with other methods, such as IMU dead reckoning or previous event-based rotation estimation methods). We make the source code publicly available.


Data Pruning Can Do More: A Comprehensive Data Pruning Approach for Object Re-identification

arXiv.org Artificial Intelligence

Previous studies have demonstrated that not each sample in a dataset is of equal importance during training. Data pruning aims to remove less important or informative samples while still achieving comparable results as training on the original (untruncated) dataset, thereby reducing storage and training costs. However, the majority of data pruning methods are applied to image classification tasks. To our knowledge, this work is the first to explore the feasibility of these pruning methods applied to object re-identification (ReID) tasks, while also presenting a more comprehensive data pruning approach. By fully leveraging the logit history during training, our approach offers a more accurate and comprehensive metric for quantifying sample importance, as well as correcting mislabeled samples and recognizing outliers. Furthermore, our approach is highly efficient, reducing the cost of importance score estimation by 10 times compared to existing methods. Our approach is a plug-and-play, architecture-agnostic framework that can eliminate/reduce 35%, 30%, and 5% of samples/training time on the VeRi, MSMT17 and Market1501 datasets, respectively, with negligible loss in accuracy (< 0.1%). The lists of important, mislabeled, and outlier samples from these ReID datasets are available at https://github.com/Zi-Y/data-pruning-reid.


Event-based Tracking of Any Point with Motion-Robust Correlation Features

arXiv.org Artificial Intelligence

Tracking any point (TAP) recently shifted the motion estimation paradigm from focusing on individual salient points with local templates to tracking arbitrary points with global image contexts. However, while research has mostly focused on driving the accuracy of models in nominal settings, addressing scenarios with difficult lighting conditions and high-speed motions remains out of reach due to the limitations of the sensor. This work addresses this challenge with the first event camera-based TAP method. It leverages the high temporal resolution and high dynamic range of event cameras for robust high-speed tracking, and the global contexts in TAP methods to handle asynchronous and sparse event measurements. We further extend the TAP framework to handle event feature variations induced by motion - thereby addressing an open challenge in purely event-based tracking - with a novel feature alignment loss which ensures the learning of motion-robust features. Our method is trained with data from a new data generation pipeline and systematically ablated across all design decisions. Our method shows strong cross-dataset generalization and performs 135% better on the average Jaccard metric than the baselines. Moreover, on an established feature tracking benchmark, it achieves a 19% improvement over the previous best event-only method and even surpasses the previous best events-and-frames method by 3.7%.


ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras

arXiv.org Artificial Intelligence

Event-based visual odometry is a specific branch of visual Simultaneous Localization and Mapping (SLAM) techniques, which aims at solving tracking and mapping sub-problems in parallel by exploiting the special working principles of neuromorphic (ie, event-based) cameras. Due to the motion-dependent nature of event data, explicit data association ie, feature matching under large-baseline view-point changes is hardly established, making direct methods a more rational choice. However, state-of-the-art direct methods are limited by the high computational complexity of the mapping sub-problem and the degeneracy of camera pose tracking in certain degrees of freedom (DoF) in rotation. In this paper, we resolve these issues by building an event-based stereo visual-inertial odometry system on top of our previous direct pipeline Event-based Stereo Visual Odometry. Specifically, to speed up the mapping operation, we propose an efficient strategy for sampling contour points according to the local dynamics of events. The mapping performance is also improved in terms of structure completeness and local smoothness by merging the temporal stereo and static stereo results. To circumvent the degeneracy of camera pose tracking in recovering the pitch and yaw components of general six-DoF motion, we introduce IMU measurements as motion priors via pre-integration. To this end, a compact back-end is proposed for continuously updating the IMU bias and predicting the linear velocity, enabling an accurate motion prediction for camera pose tracking. The resulting system scales well with modern high-resolution event cameras and leads to better global positioning accuracy in large-scale outdoor environments. Extensive evaluations on five publicly available datasets featuring different resolutions and scenarios justify the superior performance of the proposed system against five state-of-the-art methods.


Event-based Stereo Depth Estimation: A Survey

arXiv.org Artificial Intelligence

Stereopsis has widespread appeal in robotics as it is the predominant way by which living beings perceive depth to navigate our 3D world. Event cameras are novel bio-inspired sensors that detect per-pixel brightness changes asynchronously, with very high temporal resolution and high dynamic range, enabling machine perception in high-speed motion and broad illumination conditions. The high temporal precision also benefits stereo matching, making disparity (depth) estimation a popular research area for event cameras ever since its inception. Over the last 30 years, the field has evolved rapidly, from low-latency, low-power circuit design to current deep learning (DL) approaches driven by the computer vision community. The bibliography is vast and difficult to navigate for non-experts due its highly interdisciplinary nature. Past surveys have addressed distinct aspects of this topic, in the context of applications, or focusing only on a specific class of techniques, but have overlooked stereo datasets. This survey provides a comprehensive overview, covering both instantaneous stereo and long-term methods suitable for simultaneous localization and mapping (SLAM), along with theoretical and empirical comparisons. It is the first to extensively review DL methods as well as stereo datasets, even providing practical suggestions for creating new benchmarks to advance the field. The main advantages and challenges faced by event-based stereo depth estimation are also discussed. Despite significant progress, challenges remain in achieving optimal performance in not only accuracy but also efficiency, a cornerstone of event-based computing. We identify several gaps and propose future research directions. We hope this survey inspires future research in this area, by serving as an accessible entry point for newcomers, as well as a practical guide for seasoned researchers in the community.


Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation

arXiv.org Artificial Intelligence

Current optical flow and point-tracking methods rely heavily on synthetic datasets. Event cameras are novel vision sensors with advantages in challenging visual conditions, but state-of-the-art frame-based methods cannot be easily adapted to event data due to the limitations of current event simulators. We introduce a novel self-supervised loss combining the Contrast Maximization framework with a non-linear motion prior in the form of pixel-level trajectories and propose an efficient solution to solve the high-dimensional assignment problem between non-linear trajectories and events. Their effectiveness is demonstrated in two scenarios: In dense continuous-time motion estimation, our method improves the zero-shot performance of a synthetically trained model on the real-world dataset EVIMO2 by 29%. In optical flow estimation, our method elevates a simple UNet to achieve state-of-the-art performance among self-supervised methods on the DSEC optical flow benchmark. Our code is available at https://github.com/tub-rip/MotionPriorCMax.


Real-time Noise Source Estimation of a Camera System from an Image and Metadata

arXiv.org Artificial Intelligence

Autonomous machines must self-maintain proper functionality to ensure the safety of humans and themselves. This pertains particularly to its cameras as predominant sensors to perceive the environment and support actions. A fundamental camera problem addressed in this study is noise. Solutions often focus on denoising images a posteriori, that is, fighting symptoms rather than root causes. However, tackling root causes requires identifying the noise sources, considering the limitations of mobile platforms. This work investigates a real-time, memory-efficient and reliable noise source estimator that combines data- and physically-based models. To this end, a DNN that examines an image with camera metadata for major camera noise sources is built and trained. In addition, it quantifies unexpected factors that impact image noise or metadata. This study investigates seven different estimators on six datasets that include synthetic noise, real-world noise from two camera systems, and real field campaigns. For these, only the model with most metadata is capable to accurately and robustly quantify all individual noise contributions. This method outperforms total image noise estimators and can be plug-and-play deployed. It also serves as a basis to include more advanced noise sources, or as part of an automatic countermeasure feedback-loop to approach fully reliable machines.


CMax-SLAM: Event-based Rotational-Motion Bundle Adjustment and SLAM System using Contrast Maximization

arXiv.org Artificial Intelligence

Event cameras are bio-inspired visual sensors that capture pixel-wise intensity changes and output asynchronous event streams. They show great potential over conventional cameras to handle challenging scenarios in robotics and computer vision, such as high-speed and high dynamic range. This paper considers the problem of rotational motion estimation using event cameras. Several event-based rotation estimation methods have been developed in the past decade, but their performance has not been evaluated and compared under unified criteria yet. In addition, these prior works do not consider a global refinement step. To this end, we conduct a systematic study of this problem with two objectives in mind: summarizing previous works and presenting our own solution. First, we compare prior works both theoretically and experimentally. Second, we propose the first event-based rotation-only bundle adjustment (BA) approach. We formulate it leveraging the state-of-the-art Contrast Maximization (CMax) framework, which is principled and avoids the need to convert events into frames. Third, we use the proposed BA to build CMax-SLAM, the first event-based rotation-only SLAM system comprising a front-end and a back-end. Our BA is able to run both offline (trajectory smoothing) and online (CMax-SLAM back-end). To demonstrate the performance and versatility of our method, we present comprehensive experiments on synthetic and real-world datasets, including indoor, outdoor and space scenarios. We discuss the pitfalls of real-world evaluation and propose a proxy for the reprojection error as the figure of merit to evaluate event-based rotation BA methods. We release the source code and novel data sequences to benefit the community. We hope this work leads to a better understanding and fosters further research on event-based ego-motion estimation. Project page: https://github.com/tub-rip/cmax_slam