Goto

Collaborating Authors

 Gajane, Pratik


Investigating Gender Fairness in Machine Learning-driven Personalized Care for Chronic Pain

arXiv.org Artificial Intelligence

Chronic pain significantly diminishes the quality of life for millions worldwide. While psychoeducation and therapy can improve pain outcomes, many individuals experiencing pain lack access to evidence-based treatments or fail to complete the necessary number of sessions to achieve benefit. Reinforcement learning (RL) shows potential in tailoring personalized pain management interventions according to patients' individual needs while ensuring the efficient use of scarce clinical resources. However, clinicians, patients, and healthcare decision-makers are concerned that RL solutions could exacerbate disparities associated with patient characteristics like race or gender. In this article, we study gender fairness in personalized pain care recommendations using a real-world application of reinforcement learning (Piette et al., 2022a). Here, adhering to gender fairness translates to minimal or no disparity in the utility received by subpopulations as defined by gender. We investigate whether the selection of relevant patient information (referred to as features) used to assist decision-making affects gender fairness. Our experiments, conducted using real-world data (Piette, 2022), indicate that included features can impact gender fairness. Moreover, we propose an RL solution, NestedRecommendation, that demonstrates the ability: i) to adaptively learn to select the features that optimize for utility and fairness, and ii) to accelerate feature selection and in turn, improve pain care recommendations from early on, by leveraging clinicians' domain expertise.


Provably Efficient Exploration in Constrained Reinforcement Learning:Posterior Sampling Is All You Need

arXiv.org Artificial Intelligence

We present a new algorithm based on posterior sampling for learning in constrained Markov decision processes (CMDP) in the infinite-horizon undiscounted setting. The algorithm achieves near-optimal regret bounds while being advantageous empirically compared to the existing algorithms. Our main theoretical result is a Bayesian regret bound for each cost component of \tilde{O} (HS \sqrt{AT}) for any communicating CMDP with S states, A actions, and bound on the hitting time H. This regret bound matches the lower bound in order of time horizon T and is the best-known regret bound for communicating CMDPs in the infinite-horizon undiscounted setting. Empirical results show that, despite its simplicity, our posterior sampling algorithm outperforms the existing algorithms for constrained reinforcement learning.


Multi-Armed Bandits with Generalized Temporally-Partitioned Rewards

arXiv.org Artificial Intelligence

Decision-making problems of sequential nature, where decisions made in the past may have an impact on the future, are used to model many practically important applications. In some real-world applications, feedback about a decision is delayed and may arrive via partial rewards that are observed with different delays. Motivated by such scenarios, we propose a novel problem formulation called multi-armed bandits with generalized temporally-partitioned rewards. To formalize how feedback about a decision is partitioned across several time steps, we introduce $\beta$-spread property. We derive a lower bound on the performance of any uniformly efficient algorithm for the considered problem. Moreover, we provide an algorithm called TP-UCB-FR-G and prove an upper bound on its performance measure. In some scenarios, our upper bound improves upon the state of the art. We provide experimental results validating the proposed algorithm and our theoretical results.


Curiosity-driven Exploration in Sparse-reward Multi-agent Reinforcement Learning

arXiv.org Artificial Intelligence

Sparsity of rewards while applying a deep reinforcement learning method negatively affects its sample-efficiency. A viable solution to deal with the sparsity of rewards is to learn via intrinsic motivation which advocates for adding an intrinsic reward to the reward function to encourage the agent to explore the environment and expand the sample space. Though intrinsic motivation methods are widely used to improve data-efficient learning in the reinforcement learning model, they also suffer from the so-called detachment problem. In this article, we discuss the limitations of intrinsic curiosity module in sparse-reward multi-agent reinforcement learning and propose a method called I-Go-Explore that combines the intrinsic curiosity module with the Go-Explore framework to alleviate the detachment problem.


Local Differential Privacy for Sequential Decision Making in a Changing Environment

arXiv.org Artificial Intelligence

We study the problem of preserving privacy while still providing high utility in sequential decision making scenarios in a changing environment. We consider abruptly changing environment: the environment remains constant during periods and it changes at unknown time instants. To formulate this problem, we propose a variant of multi-armed bandits called non-stationary stochastic corrupt bandits. We construct an algorithm called SW-KLUCB-CF and prove an upper bound on its utility using the performance measure of regret. The proven regret upper bound for SW-KLUCB-CF is near-optimal in the number of time steps and matches the best known bound for analogous problems in terms of the number of time steps and the number of changes. Moreover, we present a provably optimal mechanism which can guarantee the desired level of local differential privacy while providing high utility.


Generalizing distribution of partial rewards for multi-armed bandits with temporally-partitioned rewards

arXiv.org Artificial Intelligence

We investigate the Multi-Armed Bandit problem with Temporally-Partitioned Rewards (TP-MAB) setting in this paper. In the TP-MAB setting, an agent will receive subsets of the reward over multiple rounds rather than the entire reward for the arm all at once. In this paper, we introduce a general formulation of how an arm's cumulative reward is distributed across several rounds, called Beta-spread property. Such a generalization is needed to be able to handle partitioned rewards in which the maximum reward per round is not distributed uniformly across rounds. We derive a lower bound on the TP-MAB problem under the assumption that Beta-spread holds. Moreover, we provide an algorithm TP-UCB-FR-G, which uses the Beta-spread property to improve the regret upper bound in some scenarios. By generalizing how the cumulative reward is distributed, this setting is applicable in a broader range of applications.


The Impact of Batch Learning in Stochastic Linear Bandits

arXiv.org Artificial Intelligence

We consider a special case of bandit problems, named batched bandits, in which an agent observes batches of responses over a certain time period. Unlike previous work, we consider a more practically relevant batch-centric scenario of batch learning. That is to say, we provide a policy-agnostic regret analysis and demonstrate upper and lower bounds for the regret of a candidate policy. Our main theoretical results show that the impact of batch learning is a multiplicative factor of batch size relative to the regret of online behavior. Primarily, we study two settings of the stochastic linear bandits: bandits with finitely and infinitely many arms. While the regret bounds are the same for both settings, the former setting results hold under milder assumptions. Also, we provide a more robust result for the 2-armed bandit problem as an important insight. Finally, we demonstrate the consistency of theoretical results by conducting empirical experiments and reflect on optimal batch size choice.


The Impact of Batch Learning in Stochastic Bandits

arXiv.org Machine Learning

We consider a special case of bandit problems, namely batched bandits. Motivated by natural restrictions of recommender systems and e-commerce platforms, we assume that a learning agent observes responses batched in groups over a certain time period. Unlike previous work, we consider a more practically relevant batch-centric scenario of batch learning. We provide a policy-agnostic regret analysis and demonstrate upper and lower bounds for the regret of a candidate policy. Our main theoretical results show that the impact of batch learning can be measured in terms of online behavior. Finally, we demonstrate the consistency of theoretical results by conducting empirical experiments and reflect on the optimal batch size choice.


Autonomous exploration for navigating in non-stationary CMPs

arXiv.org Machine Learning

We consider a setting in which the objective is to learn to navigate in a controlled Markov process (CMP) where transition probabilities may abruptly change. For this setting, we propose a performance measure called exploration steps which counts the time steps at which the learner lacks sufficient knowledge to navigate its environment efficiently. We devise a learning meta-algorithm, MNM, and prove an upper bound on the exploration steps in terms of the number of changes.


Variational Regret Bounds for Reinforcement Learning

arXiv.org Machine Learning

For this For reinforcement learning in MDP with changes in reward problem setting, we propose an algorithm and function and transition probabilities, we provide provide performance guarantees for the regret an algorithm, UCRL with Restarts, a version of UCRL evaluated against the optimal non-stationary [Jaksch et al., 2010], which restarts according to a schedule policy. The upper bound on the regret is given dependent on the variation in the MDP (defined in terms of the total variation in the MDP. in Section 2 below). We derive a high-probability upper This is the first variational regret bound for the bound on the cumulative regret of our algorithm of general reinforcement learning setting.