Goto

Collaborating Authors

 Gadde, Ravi Teja


Diff2Lip: Audio Conditioned Diffusion Models for Lip-Synchronization

arXiv.org Artificial Intelligence

The task of lip synchronization (lip-sync) seeks to match the lips of human faces with different audio. It has various applications in the film industry as well as for creating virtual avatars and for video conferencing. This is a challenging problem as one needs to simultaneously introduce detailed, realistic lip movements while preserving the identity, pose, emotions, and image quality. Many of the previous methods trying to solve this problem suffer from image quality degradation due to a lack of complete contextual information. In this paper, we present Diff2Lip, an audio-conditioned diffusion-based model which is able to do lip synchronization in-the-wild while preserving these qualities. We train our model on Voxceleb2, a video dataset containing in-the-wild talking face videos. Extensive studies show that our method outperforms popular methods like Wav2Lip and PC-AVS in Fr\'echet inception distance (FID) metric and Mean Opinion Scores (MOS) of the users. We show results on both reconstruction (same audio-video inputs) as well as cross (different audio-video inputs) settings on Voxceleb2 and LRW datasets. Video results and code can be accessed from our project page ( https://soumik-kanad.github.io/diff2lip ).


Prompt Tuning GPT-2 language model for parameter-efficient domain adaptation of ASR systems

arXiv.org Artificial Intelligence

Automatic Speech Recognition (ASR) systems have found their use in numerous industrial applications in very diverse domains creating a need to adapt to new domains with small memory and deployment overhead. In this work, we introduce domain-prompts, a methodology that involves training a small number of domain embedding parameters to prime a Transformer-based Language Model (LM) to a particular domain. Using this domain-adapted LM for rescoring ASR hypotheses can achieve 7-13% WER reduction for a new domain with just 1000 unlabeled textual domain-specific sentences. This improvement is comparable or even better than fully fine-tuned models even though just 0.02% of the parameters of the base LM are updated. Additionally, our method is deployment-friendly as the learnt domain embeddings are prefixed to the input to the model rather than changing the base model architecture. Therefore, our method is an ideal choice for on-the-fly adaptation of LMs used in ASR systems to progressively scale it to new domains.


Towards Continual Entity Learning in Language Models for Conversational Agents

arXiv.org Artificial Intelligence

Neural language models (LM) trained on diverse corpora are known to work well on previously seen entities, however, updating these models with dynamically changing entities such as place names, song titles and shopping items requires re-training from scratch and collecting full sentences containing these entities. We aim to address this issue, by introducing entity-aware language models (EALM), where we integrate entity models trained on catalogues of entities into the pre-trained LMs. Our combined language model adaptively adds information from the entity models into the pre-trained LM depending on the sentence context. Our entity models can be updated independently of the pre-trained LM, enabling us to influence the distribution of entities output by the final LM, without any further training of the pre-trained LM. We show significant perplexity improvements on task-oriented dialogue datasets, especially on long-tailed utterances, with an ability to continually adapt to new entities (to an extent).


Neural Composition: Learning to Generate from Multiple Models

arXiv.org Machine Learning

Decomposing models into multiple components is critically important in many applications such as language modeling (LM) as it enables adapting individual components separately and biasing of some components to the user's personal preferences. Conventionally, contextual and personalized adaptation for language models, are achieved through class-based factorization, which requires class-annotated data, or through biasing to individual phrases which is limited in scale. In this paper, we propose a system that combines model-defined components, by learning when to activate the generation process from each individual component, and how to combine probability distributions from each component, directly from unlabeled text data.