Goto

Collaborating Authors

 Güven, Çiçek


Enhanced Load Forecasting with GAT-LSTM: Leveraging Grid and Temporal Features

arXiv.org Artificial Intelligence

Accurate power load forecasting is essential for the efficient operation and planning of electrical grids, particularly given the increased variability and complexity introduced by renewable energy sources. This paper introduces GAT-LSTM, a hybrid model that combines Graph Attention Networks (GAT) and Long Short-Term Memory (LSTM) networks. A key innovation of the model is the incorporation of edge attributes, such as line capacities and efficiencies, into the attention mechanism, enabling it to dynamically capture spatial relationships grounded in grid-specific physical and operational constraints. Additionally, by employing an early fusion of spatial graph embeddings and temporal sequence features, the model effectively learns and predicts complex interactions between spatial dependencies and temporal patterns, providing a realistic representation of the dynamics of power grids. Experimental evaluations on the Brazilian Electricity System dataset demonstrate that the GAT-LSTM model significantly outperforms state-of-the-art models, achieving reductions of 21. 8% in MAE, 15. 9% in RMSE and 20. 2% in MAPE. These results underscore the robustness and adaptability of the GAT-LSTM model, establishing it as a powerful tool for applications in grid management and energy planning.


AI in Support of Diversity and Inclusion

arXiv.org Artificial Intelligence

In this paper, we elaborate on how AI can support diversity and inclusion and exemplify research projects conducted in that direction. We start by looking at the challenges and progress in making large language models (LLMs) more transparent, inclusive, and aware of social biases. Even though LLMs like ChatGPT have impressive abilities, they struggle to understand different cultural contexts and engage in meaningful, human like conversations. A key issue is that biases in language processing, especially in machine translation, can reinforce inequality. Tackling these biases requires a multidisciplinary approach to ensure AI promotes diversity, fairness, and inclusion. We also highlight AI's role in identifying biased content in media, which is important for improving representation. By detecting unequal portrayals of social groups, AI can help challenge stereotypes and create more inclusive technologies. Transparent AI algorithms, which clearly explain their decisions, are essential for building trust and reducing bias in AI systems. We also stress AI systems need diverse and inclusive training data. Projects like the Child Growth Monitor show how using a wide range of data can help address real world problems like malnutrition and poverty. We present a project that demonstrates how AI can be applied to monitor the role of search engines in spreading disinformation about the LGBTQ+ community. Moreover, we discuss the SignON project as an example of how technology can bridge communication gaps between hearing and deaf people, emphasizing the importance of collaboration and mutual trust in developing inclusive AI. Overall, with this paper, we advocate for AI systems that are not only effective but also socially responsible, promoting fair and inclusive interactions between humans and machines.